
The sum of the first $20$ odd natural numbers is:
A.$100$
B.$210$
C.$400$
D.$420$
Answer
605.4k+ views
Hint: The question is related to the sum of consecutive odd positive numbers. The sum of the first $n$ consecutive odd positive numbers is equal to ${{n}^{2}}$ .
Complete step-by-step answer:
Before we proceed with the solution, we must understand the concept of an arithmetic progression. An arithmetic progression is a series of numbers, in which the difference between any two consecutive numbers is constant. In the series of odd numbers, we can see that the difference between any two consecutive odd numbers is always equal to $2$ . For example: Consider the series $5,7,9,11,13$ . It is a series of odd natural numbers with the first term $5$ and the last term $13$. Now, the difference between the first two terms is $7-5=2$ , the difference between the next two terms is $9-7=2$ , the difference between the next two terms is $11-9=2$ , and the difference between the last two terms is $13-11=2$ . So, we can say that the series of consecutive odd numbers is an arithmetic progression with common difference $2$ . If the first $n$ odd numbers are considered then, it is an arithmetic progression with the first term equal to $1$ , common difference equal to $2$ , and the number of terms equal to $n$ . Now, we know, the sum of the first $n$ terms of an arithmetic progression with the firth term equal to $a$ and the common difference equal to $d$ is given as ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ . So, the sum of the first $n$ consecutive odd positive numbers will be equal to $\dfrac{n}{2}\left[ 2+\left( n-1 \right)2 \right]$ .
\[=\dfrac{n}{2}\left[ 2+2n-2 \right]\]
\[=\dfrac{n}{2}\left[ 2n \right]\]
$={{n}^{2}}$
So, the sum of the first $n$ consecutive odd positive numbers is equal to ${{n}^{2}}$ .
Now, coming to the question, we are asked to find the sum of first $20$ odd natural numbers. So, here $n=20$ . So, the sum is given as ${{20}^{2}}=400$ . Hence, the sum of the first $20$ odd natural numbers is equal to $400$ .
So, option C. is the correct answer.
Note: The sum of first $n$ natural numbers is equal to $\dfrac{n\left( n+1 \right)}{2}$ . The sum of first $n$ even natural numbers is equal to $\dfrac{n\left( n+2 \right)}{2}$ and the sum of first $n$ odd natural numbers is equal to ${{n}^{2}}$ . These formulae should be remembered as they are frequently used and there should be no confusion between the formulae.
Complete step-by-step answer:
Before we proceed with the solution, we must understand the concept of an arithmetic progression. An arithmetic progression is a series of numbers, in which the difference between any two consecutive numbers is constant. In the series of odd numbers, we can see that the difference between any two consecutive odd numbers is always equal to $2$ . For example: Consider the series $5,7,9,11,13$ . It is a series of odd natural numbers with the first term $5$ and the last term $13$. Now, the difference between the first two terms is $7-5=2$ , the difference between the next two terms is $9-7=2$ , the difference between the next two terms is $11-9=2$ , and the difference between the last two terms is $13-11=2$ . So, we can say that the series of consecutive odd numbers is an arithmetic progression with common difference $2$ . If the first $n$ odd numbers are considered then, it is an arithmetic progression with the first term equal to $1$ , common difference equal to $2$ , and the number of terms equal to $n$ . Now, we know, the sum of the first $n$ terms of an arithmetic progression with the firth term equal to $a$ and the common difference equal to $d$ is given as ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ . So, the sum of the first $n$ consecutive odd positive numbers will be equal to $\dfrac{n}{2}\left[ 2+\left( n-1 \right)2 \right]$ .
\[=\dfrac{n}{2}\left[ 2+2n-2 \right]\]
\[=\dfrac{n}{2}\left[ 2n \right]\]
$={{n}^{2}}$
So, the sum of the first $n$ consecutive odd positive numbers is equal to ${{n}^{2}}$ .
Now, coming to the question, we are asked to find the sum of first $20$ odd natural numbers. So, here $n=20$ . So, the sum is given as ${{20}^{2}}=400$ . Hence, the sum of the first $20$ odd natural numbers is equal to $400$ .
So, option C. is the correct answer.
Note: The sum of first $n$ natural numbers is equal to $\dfrac{n\left( n+1 \right)}{2}$ . The sum of first $n$ even natural numbers is equal to $\dfrac{n\left( n+2 \right)}{2}$ and the sum of first $n$ odd natural numbers is equal to ${{n}^{2}}$ . These formulae should be remembered as they are frequently used and there should be no confusion between the formulae.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

