
The sum of n terms of two \[AP\] are in ratio $\left( {5n + 4} \right):\left( {9n + 6} \right)$ Find the ratio of their ${18^{th}}$ term?
Answer
411.9k+ views
Hint: In this problem, we need to find ratio of \[{18^{th}}\text{term of first A.p}\] to that of\[{18^{th}} \text{term of second A.p}\], first we will find the number of terms that is $n$ and then we will substitute in the given equation to get the required solution.
Formulas used:
${n^{th}}$ term, ${a_n} = a + \left( {n - 1} \right)d$
Sum of $n$ terms, ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
$a = $ first term of $A.P$
$d = $ Common difference of $A.P$
Complete step-by-step solution:
We need to find, ratio of \[{18^{th}}\text{term of first A.p}\] to that of \[{18^{th}}\text{term of second A.p}\]
That is \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = ?\]
Let, sum of n terms of first $A.P$$ = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$ and
Sum of n terms of second $A.P$ \[ = \dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]\]
Where, $a = $ first term of ${1^{st}}$ $A.P$
$d = $ Common difference of ${1^{st}}$ $A.P$
${a^1} = $ First term of ${2^{nd}}$ $A.P$
${d^1} = $ Common difference of ${2^{nd}}$ $A.P$
Given: sum of n terms of two $AP$ are in ratio $ = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}$
That is,
Sum of n terms of first $A.P$ : Sum of n terms of second $A.P$ = $\left( {5n + 4} \right):\left( {9n + 6} \right)$
\[\dfrac{{\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]}}{{\dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
\[\Rightarrow \dfrac{{n\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{n\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
On cancelling $n$ , we can write above equation as
\[\dfrac{{\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\] …….$\left( 1 \right)$
As we need to need to find ratio of their ${18^{th}}$ term
That is, ${18^{th}}$ term of first $A.P$ : ${18^{th}}$ term of second $A.P$ = $a + \left( {18 - 1} \right)d:{a^1} + \left( {18 - 1} \right){d^1}$
$ = \dfrac{{a + \left( {18 - 1} \right)d}}{{{a^1} + \left( {18 - 1} \right){d^1}}}$
\[ = \dfrac{{a + 17d}}{{{a^1} + 17{d^1}}}\]
Here, \[\dfrac{{n - 1}}{2} = 17\]
$n - 1 = 17 \times 2$
$n - 1 = 34$
$\therefore n = 35$
Substituting the value of $n$ in equation $\left( 1 \right)$ we get,
\[\dfrac{{\left[ {a + \dfrac{{\left( {35 - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {35 - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
On simplifying, we get
\[\dfrac{{\left[ {a + \dfrac{{\left( {34} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {34} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
Therefore, \[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
\[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {175 + 4} \right)}}{{\left( {315 + 6} \right)}}\]
Hence, \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = \dfrac{{179}}{{321}}\]
Therefore, the ratio of ${18^{th}}$ term of ${1^{st}}$ $A.P$ and ${18^{th}}$ term of ${2^{nd}}$ $A.P$ is $179:321$
Note: A progression is said to be a special type of sequence in which it is possible to obtain a formula for ${n^{th}}$ term. Arithmetic progression is the a sequence of number in which it will be having the difference of any two consecutive number will remain constant
Formulas used:
${n^{th}}$ term, ${a_n} = a + \left( {n - 1} \right)d$
Sum of $n$ terms, ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
$a = $ first term of $A.P$
$d = $ Common difference of $A.P$
Complete step-by-step solution:
We need to find, ratio of \[{18^{th}}\text{term of first A.p}\] to that of \[{18^{th}}\text{term of second A.p}\]
That is \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = ?\]
Let, sum of n terms of first $A.P$$ = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$ and
Sum of n terms of second $A.P$ \[ = \dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]\]
Where, $a = $ first term of ${1^{st}}$ $A.P$
$d = $ Common difference of ${1^{st}}$ $A.P$
${a^1} = $ First term of ${2^{nd}}$ $A.P$
${d^1} = $ Common difference of ${2^{nd}}$ $A.P$
Given: sum of n terms of two $AP$ are in ratio $ = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}$
That is,
Sum of n terms of first $A.P$ : Sum of n terms of second $A.P$ = $\left( {5n + 4} \right):\left( {9n + 6} \right)$
\[\dfrac{{\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]}}{{\dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
\[\Rightarrow \dfrac{{n\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{n\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
On cancelling $n$ , we can write above equation as
\[\dfrac{{\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\] …….$\left( 1 \right)$
As we need to need to find ratio of their ${18^{th}}$ term
That is, ${18^{th}}$ term of first $A.P$ : ${18^{th}}$ term of second $A.P$ = $a + \left( {18 - 1} \right)d:{a^1} + \left( {18 - 1} \right){d^1}$
$ = \dfrac{{a + \left( {18 - 1} \right)d}}{{{a^1} + \left( {18 - 1} \right){d^1}}}$
\[ = \dfrac{{a + 17d}}{{{a^1} + 17{d^1}}}\]
Here, \[\dfrac{{n - 1}}{2} = 17\]
$n - 1 = 17 \times 2$
$n - 1 = 34$
$\therefore n = 35$
Substituting the value of $n$ in equation $\left( 1 \right)$ we get,
\[\dfrac{{\left[ {a + \dfrac{{\left( {35 - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {35 - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
On simplifying, we get
\[\dfrac{{\left[ {a + \dfrac{{\left( {34} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {34} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
Therefore, \[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
\[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {175 + 4} \right)}}{{\left( {315 + 6} \right)}}\]
Hence, \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = \dfrac{{179}}{{321}}\]
Therefore, the ratio of ${18^{th}}$ term of ${1^{st}}$ $A.P$ and ${18^{th}}$ term of ${2^{nd}}$ $A.P$ is $179:321$
Note: A progression is said to be a special type of sequence in which it is possible to obtain a formula for ${n^{th}}$ term. Arithmetic progression is the a sequence of number in which it will be having the difference of any two consecutive number will remain constant
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What constitutes the central nervous system How are class 10 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
