Answer

Verified

306.9k+ views

**Hint:**In this problem, we need to find ratio of \[{18^{th}}\text{term of first A.p}\] to that of\[{18^{th}} \text{term of second A.p}\], first we will find the number of terms that is $n$ and then we will substitute in the given equation to get the required solution.

Formulas used:

${n^{th}}$ term, ${a_n} = a + \left( {n - 1} \right)d$

Sum of $n$ terms, ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$

$a = $ first term of $A.P$

$d = $ Common difference of $A.P$

**Complete step-by-step solution:**

We need to find, ratio of \[{18^{th}}\text{term of first A.p}\] to that of \[{18^{th}}\text{term of second A.p}\]

That is \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = ?\]

Let, sum of n terms of first $A.P$$ = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$ and

Sum of n terms of second $A.P$ \[ = \dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]\]

Where, $a = $ first term of ${1^{st}}$ $A.P$

$d = $ Common difference of ${1^{st}}$ $A.P$

${a^1} = $ First term of ${2^{nd}}$ $A.P$

${d^1} = $ Common difference of ${2^{nd}}$ $A.P$

Given: sum of n terms of two $AP$ are in ratio $ = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}$

That is,

Sum of n terms of first $A.P$ : Sum of n terms of second $A.P$ = $\left( {5n + 4} \right):\left( {9n + 6} \right)$

\[\dfrac{{\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]}}{{\dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]

\[\Rightarrow \dfrac{{n\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{n\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]

On cancelling $n$ , we can write above equation as

\[\dfrac{{\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\] …….$\left( 1 \right)$

As we need to need to find ratio of their ${18^{th}}$ term

That is, ${18^{th}}$ term of first $A.P$ : ${18^{th}}$ term of second $A.P$ = $a + \left( {18 - 1} \right)d:{a^1} + \left( {18 - 1} \right){d^1}$

$ = \dfrac{{a + \left( {18 - 1} \right)d}}{{{a^1} + \left( {18 - 1} \right){d^1}}}$

\[ = \dfrac{{a + 17d}}{{{a^1} + 17{d^1}}}\]

Here, \[\dfrac{{n - 1}}{2} = 17\]

$n - 1 = 17 \times 2$

$n - 1 = 34$

$\therefore n = 35$

Substituting the value of $n$ in equation $\left( 1 \right)$ we get,

\[\dfrac{{\left[ {a + \dfrac{{\left( {35 - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {35 - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]

On simplifying, we get

\[\dfrac{{\left[ {a + \dfrac{{\left( {34} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {34} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]

Therefore, \[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]

\[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {175 + 4} \right)}}{{\left( {315 + 6} \right)}}\]

Hence, \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = \dfrac{{179}}{{321}}\]

**Therefore, the ratio of ${18^{th}}$ term of ${1^{st}}$ $A.P$ and ${18^{th}}$ term of ${2^{nd}}$ $A.P$ is $179:321$**

**Note:**A progression is said to be a special type of sequence in which it is possible to obtain a formula for ${n^{th}}$ term. Arithmetic progression is the a sequence of number in which it will be having the difference of any two consecutive number will remain constant

Recently Updated Pages

The branch of science which deals with nature and natural class 10 physics CBSE

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How will you bring about the following conversions class 12 chemistry CBSE

Consider a system of two identical particles One of class 11 physics CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

State the laws of reflection of light