
The sum of infinite GP is 57 and their cubes is 9747. Find the GP.
Answer
604.2k+ views
Hint: First apply the sum of geometric progression formula to the general sequence. Now find cubes of all terms. Try to observe the new sequence is a progression of type. After finding, apply the formula to this new sequence. Now you have 2 relations between 2 variables a, r. Solve these 2 equations by manipulating algebraically to find values of a, r. Thus getting the geometric progression, which is the required sequence.
Complete step-by-step solution -
Given condition in the question, is given by as follows:
The Sum of terms of Geometric progression is 57.
We know the sum of an infinite geometric progression of common ratio ‘r’ with the first term ‘a’ is given by $\dfrac{a}{{1 - r}}$.
Let us assume the first term of given progression is a, common ratio is r.
By substituting all values into the formula, we get it as:
$\dfrac{a}{{1 - r}}{\rm{ = 57 }}$ ……………….(1)
By applying cube on both sides of above equation, we get it as:
${\left( {\dfrac{a}{{1 - r}}} \right)^3}{\rm{ = 5}}{{\rm{7}}^3}$
By basic algebra knowledge, we can take the power n formula as:
${\left( {\dfrac{x}{y}} \right)^n}{\rm{ = }}\dfrac{{{x^n}}}{{{y^n}}}$
By substituting the above condition, we can get it in form of:
$\dfrac{{{a^3}}}{{{{\left( {1 - r} \right)}^3}}}{\rm{ = 5}}{{\rm{7}}^3}{\rm{ }}$ ……………….(2)
But our assumptions, we write the given progression as:
$a,{\rm{ ar, a}}{{\rm{r}}^2},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{.}}$
By finding cube or each term, thus forming new sequence:
${\left( a \right)^3},{\rm{ }}{\left( {{\rm{ar}}} \right)^3}{\rm{, }}{\left( {{\rm{a}}{{\rm{r}}^2}} \right)^3},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{.}}$
By basic properties of power, we have the formula as:
${\left( {xy} \right)^n}{\rm{ = }}{{\rm{x}}^{n{\rm{ }}}}{y^n};{\rm{ }}{\left( {{x^y}} \right)^n}{\rm{ = }}{{\rm{x}}^{yn}}$
By substituting these, we get the condition as follows:
${a^3},{\rm{ }}{{\rm{a}}^3}{r^3},{\rm{ }}{{\rm{a}}^3}{r^6},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}$
First term $ = {\rm{ }}{{\rm{a}}^{\rm{3}}}$
Common ratio $ = \dfrac{{\text{second term}}}{{\text{first term}}} = {{\rm{r}}^{\rm{3}}}$
So, applying formula of sum to this new sequence, we get it as:
$\dfrac{{{a^3}}}{{1 - {r^3}}}{\rm{ = 9747 }}$ ……………….(3)
By dividing equation (2) with equation (3), we get it as:
$\dfrac{\dfrac{a^3}{(1-r)^3}}{\dfrac{a^3}{(1-r^3)}} = \dfrac{57^3}{9747} = \dfrac{57 \times 57 \times 57}{9747}$
We can write 9747 as 57 x 57 x 3, and cancelling common terms we get:
$\dfrac{{1 - {r^3}}}{{{{\left( {1 - r} \right)}^3}}}{\rm{ = }}\dfrac{{57 \times 57 \times 57}}{{57 \times 57 \times 3}}{\rm{ = }}\dfrac{{{\rm{57}}}}{3}{\rm{ = 19}}$
By writing \[1 - {r^3}{\rm{ = }}\left( {{\rm{1 - r}}} \right){\rm{ }}\left( {{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}} \right)\] we can cancel \[\left( {{\rm{1}} - {\rm{r}}} \right)\], we get:
\[\dfrac{{{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}}}{{{{\left( {1 - r} \right)}^2}}}{\rm{ = 19}}\]
By cross multiplying, we get the equation as:
\[{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}{\rm{ = 19}}{\left( {1 - r} \right)^2}\]
By expanding ${\left( {1 - r} \right)^2}$as\[{\rm{1 + }}{{\rm{r}}^{\rm{2}}}{\rm{ - 2r}}\], we get the equation as:
\[{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}{\rm{ = 19}}\left( {{r^2} - 2r + 1} \right)\]
By multiplying 19 inside the bracket on right hand side, we get:
\[{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}{\rm{ = 19}}{{\rm{r}}^{\rm{2}}}{\rm{ - 38r + 9}}\]
By subtracting $\left( {{r^2} + r{\rm{ + 1}}} \right)$ on both sides of equation, we get it as:
$19{r^2}{\rm{ + 19 - 38r - }}\left( {1{\rm{ + r + }}{{\rm{r}}^{\rm{2}}}} \right){\rm{ = 0}}$
By multiplying “-“inside the bracket, we get the equation as:
$19{r^2}{\rm{ + 19 - 38r - 1 - r - }}{{\rm{r}}^{\rm{2}}}{\rm{ = 0}}$
By combining the common terms, we get the equation as:
$19{r^2}{\rm{ - }}{{\rm{r}}^{\rm{2}}}{\rm{ - 38r - r + 19 - 1 = 0}}$
By simplifying the above equation, we get the equation as:
$18{r^2}{\rm{ - 39r + 18 = 0}}$
We can write 39r as $27r + 12r$, we get as
\[18{r^2}{\rm{ - 12r - 27r + 18 = 0}}\]
$ \Rightarrow \left( {3r - 2} \right)\left( {6r - 9} \right) = 0$
By above equation we get value of r to be as:
\[r{\rm{ = }}\dfrac{2}{3},{\rm{ }}\dfrac{9}{6}{\rm{ = }}\dfrac{2}{3},{\rm{ }}\dfrac{3}{2}\]
As we applied formula of \[{\rm{r}} < {\rm{1}}\], we take the value as \[{\rm{r}} = \dfrac{2}{3}\]
By substituting in equation (1), we get it as,
$\dfrac{a}{{1 - \dfrac{2}{3}}}{\rm{ = 57 }} \Rightarrow {\rm{ a = 57 }} \times {\rm{ }}\dfrac{1}{3}$
By simplification, we get the value of a as 19.
So, progression can be written as sequence below:
$19,{\rm{ 19 }} \times {\rm{ }}\dfrac{2}{3},{\rm{ 19 }} \times {\rm{ }}\dfrac{4}{9},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{.}}$
By simplification, we get final progression as:
$19,{\rm{ }}\dfrac{{38}}{3},{\rm{ }}\dfrac{{76}}{9},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}$
Note: Be careful while dividing equations, the idea of writing 9747 as \[{\rm{57 x 57 x 3}}\] is very important. While you get two roots of the equation remember to take only $\dfrac{2}{3}$ don’t confuse and take both you will get the wrong answer. To avoid confusion always verify the result you obtained.
Complete step-by-step solution -
Given condition in the question, is given by as follows:
The Sum of terms of Geometric progression is 57.
We know the sum of an infinite geometric progression of common ratio ‘r’ with the first term ‘a’ is given by $\dfrac{a}{{1 - r}}$.
Let us assume the first term of given progression is a, common ratio is r.
By substituting all values into the formula, we get it as:
$\dfrac{a}{{1 - r}}{\rm{ = 57 }}$ ……………….(1)
By applying cube on both sides of above equation, we get it as:
${\left( {\dfrac{a}{{1 - r}}} \right)^3}{\rm{ = 5}}{{\rm{7}}^3}$
By basic algebra knowledge, we can take the power n formula as:
${\left( {\dfrac{x}{y}} \right)^n}{\rm{ = }}\dfrac{{{x^n}}}{{{y^n}}}$
By substituting the above condition, we can get it in form of:
$\dfrac{{{a^3}}}{{{{\left( {1 - r} \right)}^3}}}{\rm{ = 5}}{{\rm{7}}^3}{\rm{ }}$ ……………….(2)
But our assumptions, we write the given progression as:
$a,{\rm{ ar, a}}{{\rm{r}}^2},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{.}}$
By finding cube or each term, thus forming new sequence:
${\left( a \right)^3},{\rm{ }}{\left( {{\rm{ar}}} \right)^3}{\rm{, }}{\left( {{\rm{a}}{{\rm{r}}^2}} \right)^3},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{.}}$
By basic properties of power, we have the formula as:
${\left( {xy} \right)^n}{\rm{ = }}{{\rm{x}}^{n{\rm{ }}}}{y^n};{\rm{ }}{\left( {{x^y}} \right)^n}{\rm{ = }}{{\rm{x}}^{yn}}$
By substituting these, we get the condition as follows:
${a^3},{\rm{ }}{{\rm{a}}^3}{r^3},{\rm{ }}{{\rm{a}}^3}{r^6},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}$
First term $ = {\rm{ }}{{\rm{a}}^{\rm{3}}}$
Common ratio $ = \dfrac{{\text{second term}}}{{\text{first term}}} = {{\rm{r}}^{\rm{3}}}$
So, applying formula of sum to this new sequence, we get it as:
$\dfrac{{{a^3}}}{{1 - {r^3}}}{\rm{ = 9747 }}$ ……………….(3)
By dividing equation (2) with equation (3), we get it as:
$\dfrac{\dfrac{a^3}{(1-r)^3}}{\dfrac{a^3}{(1-r^3)}} = \dfrac{57^3}{9747} = \dfrac{57 \times 57 \times 57}{9747}$
We can write 9747 as 57 x 57 x 3, and cancelling common terms we get:
$\dfrac{{1 - {r^3}}}{{{{\left( {1 - r} \right)}^3}}}{\rm{ = }}\dfrac{{57 \times 57 \times 57}}{{57 \times 57 \times 3}}{\rm{ = }}\dfrac{{{\rm{57}}}}{3}{\rm{ = 19}}$
By writing \[1 - {r^3}{\rm{ = }}\left( {{\rm{1 - r}}} \right){\rm{ }}\left( {{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}} \right)\] we can cancel \[\left( {{\rm{1}} - {\rm{r}}} \right)\], we get:
\[\dfrac{{{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}}}{{{{\left( {1 - r} \right)}^2}}}{\rm{ = 19}}\]
By cross multiplying, we get the equation as:
\[{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}{\rm{ = 19}}{\left( {1 - r} \right)^2}\]
By expanding ${\left( {1 - r} \right)^2}$as\[{\rm{1 + }}{{\rm{r}}^{\rm{2}}}{\rm{ - 2r}}\], we get the equation as:
\[{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}{\rm{ = 19}}\left( {{r^2} - 2r + 1} \right)\]
By multiplying 19 inside the bracket on right hand side, we get:
\[{\rm{1 + r + }}{{\rm{r}}^{\rm{2}}}{\rm{ = 19}}{{\rm{r}}^{\rm{2}}}{\rm{ - 38r + 9}}\]
By subtracting $\left( {{r^2} + r{\rm{ + 1}}} \right)$ on both sides of equation, we get it as:
$19{r^2}{\rm{ + 19 - 38r - }}\left( {1{\rm{ + r + }}{{\rm{r}}^{\rm{2}}}} \right){\rm{ = 0}}$
By multiplying “-“inside the bracket, we get the equation as:
$19{r^2}{\rm{ + 19 - 38r - 1 - r - }}{{\rm{r}}^{\rm{2}}}{\rm{ = 0}}$
By combining the common terms, we get the equation as:
$19{r^2}{\rm{ - }}{{\rm{r}}^{\rm{2}}}{\rm{ - 38r - r + 19 - 1 = 0}}$
By simplifying the above equation, we get the equation as:
$18{r^2}{\rm{ - 39r + 18 = 0}}$
We can write 39r as $27r + 12r$, we get as
\[18{r^2}{\rm{ - 12r - 27r + 18 = 0}}\]
$ \Rightarrow \left( {3r - 2} \right)\left( {6r - 9} \right) = 0$
By above equation we get value of r to be as:
\[r{\rm{ = }}\dfrac{2}{3},{\rm{ }}\dfrac{9}{6}{\rm{ = }}\dfrac{2}{3},{\rm{ }}\dfrac{3}{2}\]
As we applied formula of \[{\rm{r}} < {\rm{1}}\], we take the value as \[{\rm{r}} = \dfrac{2}{3}\]
By substituting in equation (1), we get it as,
$\dfrac{a}{{1 - \dfrac{2}{3}}}{\rm{ = 57 }} \Rightarrow {\rm{ a = 57 }} \times {\rm{ }}\dfrac{1}{3}$
By simplification, we get the value of a as 19.
So, progression can be written as sequence below:
$19,{\rm{ 19 }} \times {\rm{ }}\dfrac{2}{3},{\rm{ 19 }} \times {\rm{ }}\dfrac{4}{9},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{.}}$
By simplification, we get final progression as:
$19,{\rm{ }}\dfrac{{38}}{3},{\rm{ }}\dfrac{{76}}{9},{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}$
Note: Be careful while dividing equations, the idea of writing 9747 as \[{\rm{57 x 57 x 3}}\] is very important. While you get two roots of the equation remember to take only $\dfrac{2}{3}$ don’t confuse and take both you will get the wrong answer. To avoid confusion always verify the result you obtained.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Which Country is Called "The Land of Festivals"?

What type of cell is found in the Seminiferous tub class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

