
The sum of a numerator and denominator of a fraction is 18. If the denominator increased by 2, the fraction reduces to $\frac{1}{3}$. Find the fraction.
Answer
607.5k+ views
Hint: Use Substitution method to find the value of x and y.
Let the numerator be x and denominator be y.
And it is given to us that the sum of numerator and denominator of a fraction is 18.
Therefore we have, x + y = 18.................(i)
And also it is given to us that the denominator increased by 2 and fraction reduces to $\frac{1}{3}$ and hence we have,
$\frac{x}{{y + 2}} = \frac{1}{3}$ ..................(ii)
Now from equation (i) , we have
y= 18 – x
Again on simplifying the equation (ii) we have
3x = y + 2
Therefore on rearranging, we have
3x – y – 2 =0...................(iii)
So on substituting the value of y on equation (iii), we have
$ \Rightarrow $ 3x –(18-x) -2=0
And hence on simplification, we have
$ \Rightarrow $4x – 20=0
$ \Rightarrow $4x = 20
Now 4 will cancel out 20 in 5 times therefore we have
$ \Rightarrow $x =5
Now we have the value of x and hence on putting the value of x in equation(i) we have,
$ \Rightarrow $5 + y=18
$ \Rightarrow $y = 18 – 5
$ \Rightarrow $y = 13
Thus the original fraction is $\frac{x}{y} = \frac{5}{{13}}$ .
Note: In this type of question we have to find the value of x and y. So in order to find the value of x and y we’ll use a substitution method after forming two equations with the help of given data and hence after substituting the value of either x or y on those equations, we’ll have our answer.
Let the numerator be x and denominator be y.
And it is given to us that the sum of numerator and denominator of a fraction is 18.
Therefore we have, x + y = 18.................(i)
And also it is given to us that the denominator increased by 2 and fraction reduces to $\frac{1}{3}$ and hence we have,
$\frac{x}{{y + 2}} = \frac{1}{3}$ ..................(ii)
Now from equation (i) , we have
y= 18 – x
Again on simplifying the equation (ii) we have
3x = y + 2
Therefore on rearranging, we have
3x – y – 2 =0...................(iii)
So on substituting the value of y on equation (iii), we have
$ \Rightarrow $ 3x –(18-x) -2=0
And hence on simplification, we have
$ \Rightarrow $4x – 20=0
$ \Rightarrow $4x = 20
Now 4 will cancel out 20 in 5 times therefore we have
$ \Rightarrow $x =5
Now we have the value of x and hence on putting the value of x in equation(i) we have,
$ \Rightarrow $5 + y=18
$ \Rightarrow $y = 18 – 5
$ \Rightarrow $y = 13
Thus the original fraction is $\frac{x}{y} = \frac{5}{{13}}$ .
Note: In this type of question we have to find the value of x and y. So in order to find the value of x and y we’ll use a substitution method after forming two equations with the help of given data and hence after substituting the value of either x or y on those equations, we’ll have our answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

