
The sum of 15 terms of an arithmetic progression is 600, and the common difference is 5. Find the first term.
Answer
592.2k+ views
Hint: To find the first term of the given arithmetic progression, we need to form an arithmetic progression with common difference as 5. The formula of the ${{n}^{th}}$ term of this series is given by -
${{a}_{n}}$= a + (n-1) d
${{a}_{n}}$= ${{n}^{th}}$ term of this series
a = first term of the series
n = number of terms in the series
d= common difference (5 in this case)
Further, the sum of the series of arithmetic progression is given by –
Sum (of n terms) = $\dfrac{n}{2}$[a+${{a}_{n}}$] = $\dfrac{n}{2}$[2a + (n-1) d]
Complete step by step answer:
To solve this problem, we first start with the equation of sum of n terms since we are given that sum of n terms is given by –
$\dfrac{n}{2}$[2a + (n-1) d]
Here, we have n = 15 and d = 5. Since, this is equal to 600. Thus, we have,
$\dfrac{n}{2}$[2a + (n-1) d] = 600
$\dfrac{15}{2}$[2a + (15-1)$\times $5] = 600
$\dfrac{15}{2}$[2a + (14$\times $5)] = 600
[2a + (14$\times $5)] = $\dfrac{600\times 2}{15}$
[2a + (14$\times $5)] = 80
2a + 70 = 80
2a = 10
a = 5
Hence, the first term is 5.
Note: One of the ways to get the expression of the sum of an arithmetic progression is by doing the following-
= a + (a+d) + (a+2d) + … + a+(n-1) d
We club first and last, second and second last terms and so on. Thus,
= [{a + a + (n-1) d} + {a+d + a +(n-2) d} + …]
= [{2a + (n-1) d} + {2a + (n-1) d} + …]
Since, originally there were n terms and now we have clubbed 2 terms at a time, we are left
with total $\dfrac{n}{2}$terms of {2a + (n-1) d}. Thus, we have,
= $\dfrac{n}{2}${2a + (n-1) d}
Which is the formula of sum of arithmetic progression, which can be used to solve the problem.
${{a}_{n}}$= a + (n-1) d
${{a}_{n}}$= ${{n}^{th}}$ term of this series
a = first term of the series
n = number of terms in the series
d= common difference (5 in this case)
Further, the sum of the series of arithmetic progression is given by –
Sum (of n terms) = $\dfrac{n}{2}$[a+${{a}_{n}}$] = $\dfrac{n}{2}$[2a + (n-1) d]
Complete step by step answer:
To solve this problem, we first start with the equation of sum of n terms since we are given that sum of n terms is given by –
$\dfrac{n}{2}$[2a + (n-1) d]
Here, we have n = 15 and d = 5. Since, this is equal to 600. Thus, we have,
$\dfrac{n}{2}$[2a + (n-1) d] = 600
$\dfrac{15}{2}$[2a + (15-1)$\times $5] = 600
$\dfrac{15}{2}$[2a + (14$\times $5)] = 600
[2a + (14$\times $5)] = $\dfrac{600\times 2}{15}$
[2a + (14$\times $5)] = 80
2a + 70 = 80
2a = 10
a = 5
Hence, the first term is 5.
Note: One of the ways to get the expression of the sum of an arithmetic progression is by doing the following-
= a + (a+d) + (a+2d) + … + a+(n-1) d
We club first and last, second and second last terms and so on. Thus,
= [{a + a + (n-1) d} + {a+d + a +(n-2) d} + …]
= [{2a + (n-1) d} + {2a + (n-1) d} + …]
Since, originally there were n terms and now we have clubbed 2 terms at a time, we are left
with total $\dfrac{n}{2}$terms of {2a + (n-1) d}. Thus, we have,
= $\dfrac{n}{2}${2a + (n-1) d}
Which is the formula of sum of arithmetic progression, which can be used to solve the problem.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Which scientist proved that even plants have feelings class 10 physics CBSE

Write any two uses of Plaster of Paris class 10 chemistry CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

Five things I will do to build a great India class 10 english CBSE

