Answer

Verified

444.3k+ views

Hint: Try to simplify the expression that is given in the question. Make it as simplified as it can be and then apply square root function to this simplified expression.

In the question, we have to find the square root of the expression $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$. If we try to do square root of this expression, we will be able to find it’s square root but we will not be able to match our answer with any of the options. So, there is a need to simplify the expression so that we can easily find the square root of the given expression and finally, can match our answer with the options given in this question.

Before proceeding with the simplifying process, we must know a formula,

${{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}$

Using this formula, we can also say that,

${{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}..........\left( 1 \right)$

If we substitute ${{x}^{2}}-2xy+{{y}^{2}}$ as ${{\left( x-y \right)}^{2}}$ in any expression, we will get a perfect square term i.e. ${{\left( x-y \right)}^{2}}$ in that particular expression. Since that expression will contain a perfect square term, it will be easy to find the square root of that term.

So, substituting ${{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}$ from equation $\left( 1 \right)$ in the expression given in the question i.e. $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$, we get,

$\begin{align}

& 49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}=49{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}} \\

& \Rightarrow 49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}={{\left( 7 \right)}^{2}}{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}} \\

\end{align}$

In the question, we are asked to find the square root of this expression. Applying square root function on this expression, we get,

$\begin{align}

& \sqrt{{{\left( 7 \right)}^{2}}{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}}} \\

& \Rightarrow \pm 7{{\left( x-y \right)}^{2}} \\

\end{align}$

We got two answers for the square root of $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$. But since only one of the two answers is there in the options, we will mark only that option as our answer.

Hence, the answer is option (d).

Note: There is a possibility that the examiner may have given both $\pm 7{{\left( x-y \right)}^{2}}$ in the options. So, in that case, we have to mark both the options as our answer. Also, even without solving completely, one can find the answer from the options by eliminating the other options if one can identify by looking at the question that ${{x}^{2}}-2xy+{{y}^{2}}$ can be also written as ${{\left( x-y \right)}^{2}}$.

In the question, we have to find the square root of the expression $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$. If we try to do square root of this expression, we will be able to find it’s square root but we will not be able to match our answer with any of the options. So, there is a need to simplify the expression so that we can easily find the square root of the given expression and finally, can match our answer with the options given in this question.

Before proceeding with the simplifying process, we must know a formula,

${{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}$

Using this formula, we can also say that,

${{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}..........\left( 1 \right)$

If we substitute ${{x}^{2}}-2xy+{{y}^{2}}$ as ${{\left( x-y \right)}^{2}}$ in any expression, we will get a perfect square term i.e. ${{\left( x-y \right)}^{2}}$ in that particular expression. Since that expression will contain a perfect square term, it will be easy to find the square root of that term.

So, substituting ${{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}$ from equation $\left( 1 \right)$ in the expression given in the question i.e. $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$, we get,

$\begin{align}

& 49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}=49{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}} \\

& \Rightarrow 49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}={{\left( 7 \right)}^{2}}{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}} \\

\end{align}$

In the question, we are asked to find the square root of this expression. Applying square root function on this expression, we get,

$\begin{align}

& \sqrt{{{\left( 7 \right)}^{2}}{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}}} \\

& \Rightarrow \pm 7{{\left( x-y \right)}^{2}} \\

\end{align}$

We got two answers for the square root of $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$. But since only one of the two answers is there in the options, we will mark only that option as our answer.

Hence, the answer is option (d).

Note: There is a possibility that the examiner may have given both $\pm 7{{\left( x-y \right)}^{2}}$ in the options. So, in that case, we have to mark both the options as our answer. Also, even without solving completely, one can find the answer from the options by eliminating the other options if one can identify by looking at the question that ${{x}^{2}}-2xy+{{y}^{2}}$ can be also written as ${{\left( x-y \right)}^{2}}$.

Recently Updated Pages

Differentiate between Shortterm and Longterm adapt class 1 biology CBSE

How do you find slope point slope slope intercept standard class 12 maths CBSE

How do you find B1 We know that B2B+2I3 class 12 maths CBSE

How do you integrate int dfracxsqrt x2 + 9 dx class 12 maths CBSE

How do you integrate int left dfracx2 1x + 1 right class 12 maths CBSE

How do you find the critical points of yx2sin x on class 12 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

The Buddhist universities of Nalanda and Vikramshila class 7 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Name 10 Living and Non living things class 9 biology CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Who founded the Nalanda University 1 Mauryan 2 Guptas class 6 social science CBSE