
The speed of electromagnetic waves in vacuum depends upon the source of radiation. It
a. increases as we move from \[\gamma \]-rays to radio waves
b. decreases as we move from \[\gamma \]-rays to radio waves
c. is same for all of them
d. none of these
Answer
512.4k+ views
Hint: Speed of electromagnetic wave in vacuum is \[\dfrac{1}{{{\mu _0}{\varepsilon _0}}} = c\], where c is the speed of light.
Complete step by step solution:
We know that speed of electromagnetic wave in vacuum is given by
Speed of light = frequency $\times$ wavelength
$c=\nu \times \lambda$
= \[\dfrac{1}{{{\mu _0}{\varepsilon _0}}}\]
=constant
As we go from gamma rays to radio waves frequency decreases and wavelength increases thereby maintaining the product constant.
Therefore, option c) is the correct option.
Additional information: Electromagnetic waves are waves which can travel through the vacuum of outer space. Electromagnetic waves are created by the vibration of an electric charge. This vibration creates a wave which has both an electric and a magnetic component. An electromagnetic wave transports its energy through a vacuum at a speed of \[3.00{\rm{ }} \times {\rm{ }}{10^8}\;m/s\] (a speed value commonly represented by the symbol c). The propagation of an electromagnetic wave through a material medium occurs at a net speed which is less than \[3.00{\rm{ }} \times {\rm{ }}{10^8}\;m/s\].
Note: It is particularly important for the students to know the relation between the speed of light and the frequency of the wave. Without this very relation it is exceedingly hard to solve as there is no other relation or equation to equate the two quantities. Students also should know what happens when we move from gamma to radio waves.
Complete step by step solution:
We know that speed of electromagnetic wave in vacuum is given by
Speed of light = frequency $\times$ wavelength
$c=\nu \times \lambda$
= \[\dfrac{1}{{{\mu _0}{\varepsilon _0}}}\]
=constant
As we go from gamma rays to radio waves frequency decreases and wavelength increases thereby maintaining the product constant.
Therefore, option c) is the correct option.
Additional information: Electromagnetic waves are waves which can travel through the vacuum of outer space. Electromagnetic waves are created by the vibration of an electric charge. This vibration creates a wave which has both an electric and a magnetic component. An electromagnetic wave transports its energy through a vacuum at a speed of \[3.00{\rm{ }} \times {\rm{ }}{10^8}\;m/s\] (a speed value commonly represented by the symbol c). The propagation of an electromagnetic wave through a material medium occurs at a net speed which is less than \[3.00{\rm{ }} \times {\rm{ }}{10^8}\;m/s\].
Note: It is particularly important for the students to know the relation between the speed of light and the frequency of the wave. Without this very relation it is exceedingly hard to solve as there is no other relation or equation to equate the two quantities. Students also should know what happens when we move from gamma to radio waves.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Difference between mass and weight class 10 physics CBSE

What is the past participle of wear Is it worn or class 10 english CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

A farmer moves along the boundary of a square fiel-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE
