Answer
Verified
475.8k+ views
Hint: Identify the type of differential equation & chose the method to solve it.
Start by solving the given equation.
\[xdy - ydx = \sqrt {{x^2} + {y^2}} dx\]
\[xdy = \left( {y + \sqrt {{x^2} + {y^2}} } \right)dx\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{y + \sqrt {{x^2} + {y^2}} }}{x}\]
Since it is homogeneous equation,
We will equate \[y = vx\] will simplify the solution.
Therefore,
Put \[y = vx \Rightarrow \dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]
\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{vx + x\sqrt {1 + {v^2}} }}{x} = \dfrac{{v + \sqrt {1 + {v^2}} }}{1}\]
\[x\dfrac{{dv}}{{dx}} = \sqrt {1 + {v^2}} \]
\[\int {\dfrac{{dv}}{{\sqrt {1 + {v^2}} }} = \int {\dfrac{{dx}}{x}} } \]
\[\log \left( {v + \sqrt {1 + {v^2}} } \right) = \log x + \log C\]
The next step is to re-equate \[vx = y\],
\[\log \left( {\dfrac{y}{x} + \dfrac{{\sqrt {{x^2} + {y^2}} }}{x}} \right) = \log x + \log C\]
\[\log \left( {y + \sqrt {{x^2} + {y^2}} } \right) - \log x = \log x + \log C\]
\[\log \left( {y + \sqrt {{x^2} + {y^2}} } \right) = \log \left( {{x^2}C} \right)\]
Cancelling log on both sides, we get,
\[\left( {y + \sqrt {{x^2} + {y^2}} } \right) = \left( {{x^2}C} \right)\]
Option B is the correct option.
Note: It is important to have a knowledge of the various methods to solve a differential equation.
Start by solving the given equation.
\[xdy - ydx = \sqrt {{x^2} + {y^2}} dx\]
\[xdy = \left( {y + \sqrt {{x^2} + {y^2}} } \right)dx\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{y + \sqrt {{x^2} + {y^2}} }}{x}\]
Since it is homogeneous equation,
We will equate \[y = vx\] will simplify the solution.
Therefore,
Put \[y = vx \Rightarrow \dfrac{{dy}}{{dx}} = v + x\dfrac{{dv}}{{dx}}\]
\[v + x\dfrac{{dv}}{{dx}} = \dfrac{{vx + x\sqrt {1 + {v^2}} }}{x} = \dfrac{{v + \sqrt {1 + {v^2}} }}{1}\]
\[x\dfrac{{dv}}{{dx}} = \sqrt {1 + {v^2}} \]
\[\int {\dfrac{{dv}}{{\sqrt {1 + {v^2}} }} = \int {\dfrac{{dx}}{x}} } \]
\[\log \left( {v + \sqrt {1 + {v^2}} } \right) = \log x + \log C\]
The next step is to re-equate \[vx = y\],
\[\log \left( {\dfrac{y}{x} + \dfrac{{\sqrt {{x^2} + {y^2}} }}{x}} \right) = \log x + \log C\]
\[\log \left( {y + \sqrt {{x^2} + {y^2}} } \right) - \log x = \log x + \log C\]
\[\log \left( {y + \sqrt {{x^2} + {y^2}} } \right) = \log \left( {{x^2}C} \right)\]
Cancelling log on both sides, we get,
\[\left( {y + \sqrt {{x^2} + {y^2}} } \right) = \left( {{x^2}C} \right)\]
Option B is the correct option.
Note: It is important to have a knowledge of the various methods to solve a differential equation.
Recently Updated Pages
Change the following sentences into negative and interrogative class 10 english CBSE
A Paragraph on Pollution in about 100-150 Words
One cusec is equal to how many liters class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What were the social economic and political conditions class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
What is the past participle of wear Is it worn or class 10 english CBSE
A Paragraph on Pollution in about 100-150 Words
What is Commercial Farming ? What are its types ? Explain them with Examples