The sides of a triangle $ABC$ are $a,b$ and $c$ with $A,B$ and $C$as their opposite vertices respectively.
If $2b = 3a$ and ${\tan ^2}A = \dfrac{3}{5},$prove that there are two values of the third side, one of which is double the other.
Answer
Verified
507.9k+ views
Hint: Using the equation ${\tan ^2}A = \dfrac{3}{5},$find the value of $\cos A$ and then apply cosine rule.
From the question:
${\tan ^2}A = \dfrac{3}{5}$and we know that $1 + {\tan ^2}A = {\sec ^2}A$,
$
\Rightarrow {\sec ^2}A = 1 + \dfrac{3}{5}, \\
\Rightarrow {\sec ^2}A = \dfrac{8}{5}. \\
$
Further, we know that ${\cos ^2}A = \dfrac{1}{{{{\sec }^2}A}},$
$
\Rightarrow {\cos ^2}A = \dfrac{5}{8}, \\
\Rightarrow \cos A = \sqrt {\dfrac{5}{8}} , \\
\Rightarrow \cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}. \\
$
Now, applying cosine rule,
$ \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\cos A.$
From question, we know that $2b = 3a.$ Putting $a = \dfrac{{2b}}{3}$ and $\cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}$in above equation:
$
\Rightarrow {b^2} + {c^2} - \dfrac{{4{b^2}}}{9} = 2bc \times \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}, \\
\Rightarrow {c^2} + \dfrac{{5{b^2}}}{9} = \sqrt {\dfrac{5}{2}} bc, \\
\Rightarrow {c^2} - \sqrt {\dfrac{5}{2}} bc + \dfrac{{5{b^2}}}{9} = 0. \\
$
Above equation is a quadratic equation in $c.$ Let ${c_1},{c_2}$ be the root of the equation. Then,
Sum of roots $ = {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b .....(i)$
Product of root $ = {c_1}{c_2} = \dfrac{{5{b^2}}}{9}.$
We know that, ${({c_1} - {c_2})^2} = {({c_1} + {c_2})^2} - 4{c_1}{c_2}.$Putting values from above:
$
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{2} - 4 \times \dfrac{{5{b^2}}}{9}, \\
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{{18}}, \\
\Rightarrow {c_1} - {c_2} = \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b .....(ii) \\
$
Now adding equation $(i)$and $(ii)$, we have:
$
\Rightarrow 2{c_1} = \sqrt {\dfrac{5}{2}} b + \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b, \\
\Rightarrow 2{c_1} = \dfrac{{4b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} . \\
$
Putting the value of ${c_1}$in equation $(i)$,we’ll get:
$
\Rightarrow {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - {c_1}, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} . \\
$
So, we have ${c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} $and ${c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} $. From this we can say that ${c_1} = 2{c_2}.$
Therefore, we have two values of the third side in which one is twice the other. This is the required proof.
Note: Whenever two sides of a triangle are given along with the angle made by these two sides, we can use cosine rule to find out the third side.
From the question:
${\tan ^2}A = \dfrac{3}{5}$and we know that $1 + {\tan ^2}A = {\sec ^2}A$,
$
\Rightarrow {\sec ^2}A = 1 + \dfrac{3}{5}, \\
\Rightarrow {\sec ^2}A = \dfrac{8}{5}. \\
$
Further, we know that ${\cos ^2}A = \dfrac{1}{{{{\sec }^2}A}},$
$
\Rightarrow {\cos ^2}A = \dfrac{5}{8}, \\
\Rightarrow \cos A = \sqrt {\dfrac{5}{8}} , \\
\Rightarrow \cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}. \\
$
Now, applying cosine rule,
$ \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\cos A.$
From question, we know that $2b = 3a.$ Putting $a = \dfrac{{2b}}{3}$ and $\cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}$in above equation:
$
\Rightarrow {b^2} + {c^2} - \dfrac{{4{b^2}}}{9} = 2bc \times \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}, \\
\Rightarrow {c^2} + \dfrac{{5{b^2}}}{9} = \sqrt {\dfrac{5}{2}} bc, \\
\Rightarrow {c^2} - \sqrt {\dfrac{5}{2}} bc + \dfrac{{5{b^2}}}{9} = 0. \\
$
Above equation is a quadratic equation in $c.$ Let ${c_1},{c_2}$ be the root of the equation. Then,
Sum of roots $ = {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b .....(i)$
Product of root $ = {c_1}{c_2} = \dfrac{{5{b^2}}}{9}.$
We know that, ${({c_1} - {c_2})^2} = {({c_1} + {c_2})^2} - 4{c_1}{c_2}.$Putting values from above:
$
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{2} - 4 \times \dfrac{{5{b^2}}}{9}, \\
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{{18}}, \\
\Rightarrow {c_1} - {c_2} = \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b .....(ii) \\
$
Now adding equation $(i)$and $(ii)$, we have:
$
\Rightarrow 2{c_1} = \sqrt {\dfrac{5}{2}} b + \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b, \\
\Rightarrow 2{c_1} = \dfrac{{4b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} . \\
$
Putting the value of ${c_1}$in equation $(i)$,we’ll get:
$
\Rightarrow {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - {c_1}, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} . \\
$
So, we have ${c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} $and ${c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} $. From this we can say that ${c_1} = 2{c_2}.$
Therefore, we have two values of the third side in which one is twice the other. This is the required proof.
Note: Whenever two sides of a triangle are given along with the angle made by these two sides, we can use cosine rule to find out the third side.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE