Answer
Verified
425.7k+ views
Hint: We work on the unit’s place digit for these problems. At first, we find the cycle for the powers of the numbers, that is, the power after which the unit’s place digit repeats itself. We then express the power as an integer multiple of that cycle and then find the unit’s place digit for that term. We then find all the unit’s place digit for all the terms and dividing the sum by $5$ gives us the remainder.
Complete step by step answer:
Since $5$ is a single digit number, therefore only the unit’s place digit of the entire expression will matter in finding out the remainder . the given expression is
${{\left( 2017 \right)}^{2018}}+{{\left( 2018 \right)}^{2019}}+{{\left( 2019 \right)}^{2020}}$
Let us first start with ${{\left( 2017 \right)}^{2018}}$ . The unit’s place digit of $2017$ is $7$ . Every digit has a cyclic behaviour of powers, that is, the unit’s place digit repeats itself after each definite interval. For example,
$\begin{align}
& {{2}^{1}}=2 \\
& {{2}^{2}}=4 \\
& {{2}^{3}}=8 \\
& {{2}^{4}}=16 \\
& {{2}^{5}}=32 \\
\end{align}$
We can see that after the fourth power, the unit’s place digit becomes $2$ again. So, the cycle of $2$ is $4$ . If we express the power in the form $4n+a$ , then $a$ determines the unit’s place digit.
Similarly,
$\begin{align}
& {{7}^{1}}=2 \\
& {{7}^{2}}=49 \\
& {{7}^{3}}=343 \\
& {{7}^{4}}=2401 \\
& {{7}^{5}}=16807 \\
\end{align}$
Thus, the cycle of $7$ is $4$ . We express the power of $2017$ , which is $2018$ as $4\left( 504 \right)+2$ . We see that the remainder being $2$ , all that matters for the unit’s place digit is this power $2$ . ${{7}^{2}}=49$ , which has the unit’s place digit $9$ . Thus, the unit’s place digit of ${{\left( 2017 \right)}^{2018}}$ is $9$ .
Proceeding as above for ${{\left( 2018 \right)}^{2019}}$ , the cycle for $8$ is also $4$ . We express the power of $2018$ , which is $2019$ as $4\left( 504 \right)+3$ . We see that the remainder being $3$ , all that matters for the unit’s place digit is this power $3$ . ${{8}^{3}}=512$ , which has the unit's place digit $2$ . Thus, the unit’s place digit of ${{\left( 2018 \right)}^{2019}}$ is $2$ .
Proceeding as above for ${{\left( 2019 \right)}^{2020}}$ , the cycle for $9$ is $2$ . We express the power of $2019$ , which is $2020$ as $2\left( 1010 \right)+0$ . We see that the remainder being $0$ , all that matters for the unit’s place digit is this power $0$ . ${{9}^{0}}=1$ , which has the unit's place digit $1$ . Thus, the unit’s place digit of ${{\left( 2019 \right)}^{2020}}$ is $1$ .
The sum of the unit’s place digit for the entire expression is thus,
$9+2+1=12$
Since, $12$ is greater than $5$ , we cannot say that the remainder is $12$ . So, we need to again divide this $12$ by $5$ which gives $2$ as remainder.
Therefore, we can conclude that the remainder when ${{\left( 2017 \right)}^{2018}}+{{\left( 2018 \right)}^{2019}}+{{\left( 2019 \right)}^{2020}}$ is divided by $5$ is $2$ .
Note: For these types of problems, we should always focus on the unit’s place digit and nothing else, as they don’t matter. The cycle of the powers of the numbers must be calculated carefully, as students make mistakes over here. At the end, we must be careful that the remainder that we are claiming is less than the divisor; if it is not, we should again divide it by the divisor and then find the remainder.
Complete step by step answer:
Since $5$ is a single digit number, therefore only the unit’s place digit of the entire expression will matter in finding out the remainder . the given expression is
${{\left( 2017 \right)}^{2018}}+{{\left( 2018 \right)}^{2019}}+{{\left( 2019 \right)}^{2020}}$
Let us first start with ${{\left( 2017 \right)}^{2018}}$ . The unit’s place digit of $2017$ is $7$ . Every digit has a cyclic behaviour of powers, that is, the unit’s place digit repeats itself after each definite interval. For example,
$\begin{align}
& {{2}^{1}}=2 \\
& {{2}^{2}}=4 \\
& {{2}^{3}}=8 \\
& {{2}^{4}}=16 \\
& {{2}^{5}}=32 \\
\end{align}$
We can see that after the fourth power, the unit’s place digit becomes $2$ again. So, the cycle of $2$ is $4$ . If we express the power in the form $4n+a$ , then $a$ determines the unit’s place digit.
Similarly,
$\begin{align}
& {{7}^{1}}=2 \\
& {{7}^{2}}=49 \\
& {{7}^{3}}=343 \\
& {{7}^{4}}=2401 \\
& {{7}^{5}}=16807 \\
\end{align}$
Thus, the cycle of $7$ is $4$ . We express the power of $2017$ , which is $2018$ as $4\left( 504 \right)+2$ . We see that the remainder being $2$ , all that matters for the unit’s place digit is this power $2$ . ${{7}^{2}}=49$ , which has the unit’s place digit $9$ . Thus, the unit’s place digit of ${{\left( 2017 \right)}^{2018}}$ is $9$ .
Proceeding as above for ${{\left( 2018 \right)}^{2019}}$ , the cycle for $8$ is also $4$ . We express the power of $2018$ , which is $2019$ as $4\left( 504 \right)+3$ . We see that the remainder being $3$ , all that matters for the unit’s place digit is this power $3$ . ${{8}^{3}}=512$ , which has the unit's place digit $2$ . Thus, the unit’s place digit of ${{\left( 2018 \right)}^{2019}}$ is $2$ .
Proceeding as above for ${{\left( 2019 \right)}^{2020}}$ , the cycle for $9$ is $2$ . We express the power of $2019$ , which is $2020$ as $2\left( 1010 \right)+0$ . We see that the remainder being $0$ , all that matters for the unit’s place digit is this power $0$ . ${{9}^{0}}=1$ , which has the unit's place digit $1$ . Thus, the unit’s place digit of ${{\left( 2019 \right)}^{2020}}$ is $1$ .
The sum of the unit’s place digit for the entire expression is thus,
$9+2+1=12$
Since, $12$ is greater than $5$ , we cannot say that the remainder is $12$ . So, we need to again divide this $12$ by $5$ which gives $2$ as remainder.
Therefore, we can conclude that the remainder when ${{\left( 2017 \right)}^{2018}}+{{\left( 2018 \right)}^{2019}}+{{\left( 2019 \right)}^{2020}}$ is divided by $5$ is $2$ .
Note: For these types of problems, we should always focus on the unit’s place digit and nothing else, as they don’t matter. The cycle of the powers of the numbers must be calculated carefully, as students make mistakes over here. At the end, we must be careful that the remainder that we are claiming is less than the divisor; if it is not, we should again divide it by the divisor and then find the remainder.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE