Answer
Verified
437.1k+ views
Hint: So we have the equation of regression equation given for each and by comparing the equation with $y - \bar y = {b_{yx}}\left( {x - \bar x} \right)$ and for $X$ on $Y$ it will be $x - \bar x = {b_{xy}}\left( {y - \bar y} \right)$ , we will get ${b_{yx}}\& {b_{xy}}$ . And then by using the formula of correlation coefficient we will get the value. And for the second question we have the relation ${b_{yx}} = r \cdot \dfrac{{{\sigma _y}}}{{{\sigma _x}}}$ , we will get the value for ${\sigma _y}$ .
Formula used:
Correlation coefficient,
$r = \sqrt {{b_{yx}} \cdot {b_{xy}}} $
Here,
$r$ , will be the correlation coefficient
${b_{yx}}\& {b_{xy}}$ , will be the regression equation value
Complete step-by-step answer:
So we have the regression equation $y$ on $x$ is $y = \dfrac{2}{9}x$ .
So now on comparing the above equation with the formula $y - \bar y = {b_{yx}}\left( {x - \bar x} \right)$, we get
$ \Rightarrow {b_{yx}} = \dfrac{2}{9}$
Similarly the regression equation of $X$ on $Y$ is $x = \dfrac{y}{2} + \dfrac{7}{6}$.
So on comparing the above equation with the formula $x - \bar x = {b_{xy}}\left( {y - \bar y} \right)$ , we get
$ \Rightarrow {b_{xy}} = \dfrac{1}{2}$
As we know the correlation coefficient between $x$ and $y$ is
$r = \sqrt {{b_{yx}} \cdot {b_{xy}}} $
So on substituting the values, we get
$ \Rightarrow r = \sqrt {\dfrac{2}{9} \cdot \dfrac{1}{2}} $
And on solving the above square root, we get
$ \Rightarrow r = \pm \dfrac{1}{3}$
So if $r = \dfrac{1}{3}$ then ${b_{yx}}\& {b_{xy}}$ will be positive.
Therefore, the correlation between $x$ and $y$ is $\dfrac{1}{3}$
As we know we have the values given as \[\sigma _x^2 = 4\]
So on solving it we get
\[ \Rightarrow \sigma _x^{} = 2\]
So, we have the relation given by ${b_{yx}} = r \cdot \dfrac{{{\sigma _y}}}{{{\sigma _x}}}$ .
On substituting the values, we have
$ \Rightarrow \dfrac{2}{9} = \dfrac{1}{3} \cdot \dfrac{{{\sigma _y}}}{2}$
Now taking the constant term one side and solving it, we will get the value as
$ \Rightarrow {\sigma _y} = \dfrac{{12}}{9}$
And on making the fraction into the simplest form we get
$ \Rightarrow {\sigma _y} = \dfrac{4}{3}$
Hence, $\sigma _y^2 = \dfrac{{16}}{9}$ will be the value.
Note: The level of affiliation is estimated by a correlation coefficient, meant by $r$ . It is at times called Pearson's correlation coefficient after its originator and is a proportion of straight affiliation. On the off chance that a bended line is expected to communicate the relationship, other and more convoluted proportions of the correlation should be utilized.
Formula used:
Correlation coefficient,
$r = \sqrt {{b_{yx}} \cdot {b_{xy}}} $
Here,
$r$ , will be the correlation coefficient
${b_{yx}}\& {b_{xy}}$ , will be the regression equation value
Complete step-by-step answer:
So we have the regression equation $y$ on $x$ is $y = \dfrac{2}{9}x$ .
So now on comparing the above equation with the formula $y - \bar y = {b_{yx}}\left( {x - \bar x} \right)$, we get
$ \Rightarrow {b_{yx}} = \dfrac{2}{9}$
Similarly the regression equation of $X$ on $Y$ is $x = \dfrac{y}{2} + \dfrac{7}{6}$.
So on comparing the above equation with the formula $x - \bar x = {b_{xy}}\left( {y - \bar y} \right)$ , we get
$ \Rightarrow {b_{xy}} = \dfrac{1}{2}$
As we know the correlation coefficient between $x$ and $y$ is
$r = \sqrt {{b_{yx}} \cdot {b_{xy}}} $
So on substituting the values, we get
$ \Rightarrow r = \sqrt {\dfrac{2}{9} \cdot \dfrac{1}{2}} $
And on solving the above square root, we get
$ \Rightarrow r = \pm \dfrac{1}{3}$
So if $r = \dfrac{1}{3}$ then ${b_{yx}}\& {b_{xy}}$ will be positive.
Therefore, the correlation between $x$ and $y$ is $\dfrac{1}{3}$
As we know we have the values given as \[\sigma _x^2 = 4\]
So on solving it we get
\[ \Rightarrow \sigma _x^{} = 2\]
So, we have the relation given by ${b_{yx}} = r \cdot \dfrac{{{\sigma _y}}}{{{\sigma _x}}}$ .
On substituting the values, we have
$ \Rightarrow \dfrac{2}{9} = \dfrac{1}{3} \cdot \dfrac{{{\sigma _y}}}{2}$
Now taking the constant term one side and solving it, we will get the value as
$ \Rightarrow {\sigma _y} = \dfrac{{12}}{9}$
And on making the fraction into the simplest form we get
$ \Rightarrow {\sigma _y} = \dfrac{4}{3}$
Hence, $\sigma _y^2 = \dfrac{{16}}{9}$ will be the value.
Note: The level of affiliation is estimated by a correlation coefficient, meant by $r$ . It is at times called Pearson's correlation coefficient after its originator and is a proportion of straight affiliation. On the off chance that a bended line is expected to communicate the relationship, other and more convoluted proportions of the correlation should be utilized.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE