
The ratio of the sums of first \[m\] and first \[n\] terms of an arithmetic series is \[{{m}^{2}}:{{n}^{2}}\]. Show that the ratio of the \[{{m}^{th}}\] and \[{{n}^{th}}\] terms is \[(2m-1):(2n-1)\].
Answer
605.4k+ views
Hint: Use the formula of \[{{r}^{th}}\] term and sum of first r terms of an arithmetic series. Apply it for m and n and calculate the ratio from the equations.
Complete step-by-step answer:
Let the first term and common difference of the arithmetic series is \[a\] and \[d\] respectively.
We know that the sum of first r terms of an arithmetic series is \[\dfrac{r}{2}[2a+(r-1)d]\] as from the formulas of arithmetic series.
So, according to the question, \[\dfrac{\dfrac{m}{2}[2a+(m-1)d]}{\dfrac{n}{2}[2a+(n-1)d]}=\dfrac{{{m}^{2}}}{{{n}^{2}}}\]
\[\Rightarrow \] \[\dfrac{2a+(m-1)d}{2a+(n-1)d}=\dfrac{m}{n}\]
\[\Rightarrow \] \[2an+n(m-1)d=2am+m(n-1)d\]
\[\Rightarrow \] \[d[n(m-1)-m(n-1)]=2am-2an\]
\[\Rightarrow \] \[d(m-n)=2a(m-n)\]
\[\Rightarrow \] \[d=2a\] [As \[m\ne n\] ]…………… (1)
Now, we know that the \[{{r}^{th}}\] term of an arithmetic series is \[a+(r-1)d\] where a is the first term and d is the common difference of the arithmetic series.
So, ratio of the \[{{m}^{th}}\] and \[{{n}^{th}}\] terms is, \[\dfrac{a+(m-1)d}{a+(n-1)d}\] ……………… (2)
From (1) putting the value of d in (2) we get, \[\dfrac{a+(m-1)d}{a+(n-1)d}\] = \[\dfrac{a+2a(m-1)}{a+2a(n-1)}\]
= \[\dfrac{a+2am-2a}{a+2an-2a}\]=\[\dfrac{2am-a}{2an-a}=\dfrac{2m-1}{2n-1}\]
Hence, the ratio of the \[{{m}^{th}}\] and \[{{n}^{th}}\] terms is \[(2m-1):(2n-1)\].
Note: This problem uses basic properties and formulas of an arithmetic series. While cancelling out m and n from the equation we have assumed that m is not equal to n as if they were the same, then it would be a trivial one. In addition, we have assumed that a is nonzero while cancelling out because if a is zero then d will also be zero which will contradict it to be an arithmetic series.
Complete step-by-step answer:
Let the first term and common difference of the arithmetic series is \[a\] and \[d\] respectively.
We know that the sum of first r terms of an arithmetic series is \[\dfrac{r}{2}[2a+(r-1)d]\] as from the formulas of arithmetic series.
So, according to the question, \[\dfrac{\dfrac{m}{2}[2a+(m-1)d]}{\dfrac{n}{2}[2a+(n-1)d]}=\dfrac{{{m}^{2}}}{{{n}^{2}}}\]
\[\Rightarrow \] \[\dfrac{2a+(m-1)d}{2a+(n-1)d}=\dfrac{m}{n}\]
\[\Rightarrow \] \[2an+n(m-1)d=2am+m(n-1)d\]
\[\Rightarrow \] \[d[n(m-1)-m(n-1)]=2am-2an\]
\[\Rightarrow \] \[d(m-n)=2a(m-n)\]
\[\Rightarrow \] \[d=2a\] [As \[m\ne n\] ]…………… (1)
Now, we know that the \[{{r}^{th}}\] term of an arithmetic series is \[a+(r-1)d\] where a is the first term and d is the common difference of the arithmetic series.
So, ratio of the \[{{m}^{th}}\] and \[{{n}^{th}}\] terms is, \[\dfrac{a+(m-1)d}{a+(n-1)d}\] ……………… (2)
From (1) putting the value of d in (2) we get, \[\dfrac{a+(m-1)d}{a+(n-1)d}\] = \[\dfrac{a+2a(m-1)}{a+2a(n-1)}\]
= \[\dfrac{a+2am-2a}{a+2an-2a}\]=\[\dfrac{2am-a}{2an-a}=\dfrac{2m-1}{2n-1}\]
Hence, the ratio of the \[{{m}^{th}}\] and \[{{n}^{th}}\] terms is \[(2m-1):(2n-1)\].
Note: This problem uses basic properties and formulas of an arithmetic series. While cancelling out m and n from the equation we have assumed that m is not equal to n as if they were the same, then it would be a trivial one. In addition, we have assumed that a is nonzero while cancelling out because if a is zero then d will also be zero which will contradict it to be an arithmetic series.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

