Answer
Verified
493.2k+ views
Hint: Assume Veena’s present age to be x and Kinjal’s present age to be y. Make two equations on x and y based on the information given in the question. Solve those two equations to find the values of x and y. The values of x and y will be the required present ages.
Complete step-by-step answer:
Let us assume that Veena’s present age is x years, and Kinjal’s present age is y years.
Based on the first condition, the ratio of these two ages is 2:3.
Thus, $\dfrac{x}{y}=\dfrac{2}{3}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right)$
For the second condition, we know that since Veena’s present age is x, her age after 4 years will be $x+4$ years. Similarly, since Kinjal’s present age is y, age 4 years before would have been $y-4$years.
The ratio of these two ages is 4:1.
Hence, $\dfrac{x+4}{y-4}=\dfrac{4}{1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right)$
From (1), we obtain$x=\dfrac{2}{3}y$. Substituting this in equation (2), we get
$\begin{align}
& x+4=4\left( y-4 \right) \\
& \Rightarrow \dfrac{2}{3}y+4=4y-16 \\
& \Rightarrow \dfrac{2}{3}y=4y-20 \\
& \Rightarrow 4y-\dfrac{2}{3}y=20 \\
& \Rightarrow \dfrac{12y-2y}{3}=20 \\
& \Rightarrow \dfrac{10y}{3}=20 \\
\end{align}$
$\begin{align}
& \Rightarrow y=\dfrac{20\times 3}{10} \\
& \Rightarrow y=6 \\
\end{align}$
Thus, the present age of Kinjal is 6 years.
Now, to find the value of x, which gives the present age of Veena, we will substitute this value of y back in the expression obtained from (1), which is $x=\dfrac{2}{3}y$.
Thus $x=\dfrac{2}{3}\times 6$
$\Rightarrow x=4$
Thus the present age of Veena is 4 years.
Note: The solution obtained, the present ages of Veena and Kinjal can be verified by checking if these values satisfy the given conditions.
For the first condition, the ratio of their present ages is $x:y=4:6=2:3$. Thus the first condition is satisfied.
For the second condition, the ratio of Veena’s age after 4 years and Kinjal’s age 4 years before, $\left( x+4 \right):\left( y-4 \right)=8:2=4:1$. Hence, the second condition is also satisfied.
Thus, we have verified that the values of x and y obtained, 4 and 6 respectively is the correct answer.
Complete step-by-step answer:
Let us assume that Veena’s present age is x years, and Kinjal’s present age is y years.
Based on the first condition, the ratio of these two ages is 2:3.
Thus, $\dfrac{x}{y}=\dfrac{2}{3}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right)$
For the second condition, we know that since Veena’s present age is x, her age after 4 years will be $x+4$ years. Similarly, since Kinjal’s present age is y, age 4 years before would have been $y-4$years.
The ratio of these two ages is 4:1.
Hence, $\dfrac{x+4}{y-4}=\dfrac{4}{1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right)$
From (1), we obtain$x=\dfrac{2}{3}y$. Substituting this in equation (2), we get
$\begin{align}
& x+4=4\left( y-4 \right) \\
& \Rightarrow \dfrac{2}{3}y+4=4y-16 \\
& \Rightarrow \dfrac{2}{3}y=4y-20 \\
& \Rightarrow 4y-\dfrac{2}{3}y=20 \\
& \Rightarrow \dfrac{12y-2y}{3}=20 \\
& \Rightarrow \dfrac{10y}{3}=20 \\
\end{align}$
$\begin{align}
& \Rightarrow y=\dfrac{20\times 3}{10} \\
& \Rightarrow y=6 \\
\end{align}$
Thus, the present age of Kinjal is 6 years.
Now, to find the value of x, which gives the present age of Veena, we will substitute this value of y back in the expression obtained from (1), which is $x=\dfrac{2}{3}y$.
Thus $x=\dfrac{2}{3}\times 6$
$\Rightarrow x=4$
Thus the present age of Veena is 4 years.
Note: The solution obtained, the present ages of Veena and Kinjal can be verified by checking if these values satisfy the given conditions.
For the first condition, the ratio of their present ages is $x:y=4:6=2:3$. Thus the first condition is satisfied.
For the second condition, the ratio of Veena’s age after 4 years and Kinjal’s age 4 years before, $\left( x+4 \right):\left( y-4 \right)=8:2=4:1$. Hence, the second condition is also satisfied.
Thus, we have verified that the values of x and y obtained, 4 and 6 respectively is the correct answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life