
The ratio of present ages of Veena and Kinjal is 2:3. The ratio of the ages of Veena after 4 years and the age of Kinjal 4 years before is 4:1. Find their present ages.
Answer
610.2k+ views
Hint: Assume Veena’s present age to be x and Kinjal’s present age to be y. Make two equations on x and y based on the information given in the question. Solve those two equations to find the values of x and y. The values of x and y will be the required present ages.
Complete step-by-step answer:
Let us assume that Veena’s present age is x years, and Kinjal’s present age is y years.
Based on the first condition, the ratio of these two ages is 2:3.
Thus, $\dfrac{x}{y}=\dfrac{2}{3}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right)$
For the second condition, we know that since Veena’s present age is x, her age after 4 years will be $x+4$ years. Similarly, since Kinjal’s present age is y, age 4 years before would have been $y-4$years.
The ratio of these two ages is 4:1.
Hence, $\dfrac{x+4}{y-4}=\dfrac{4}{1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right)$
From (1), we obtain$x=\dfrac{2}{3}y$. Substituting this in equation (2), we get
$\begin{align}
& x+4=4\left( y-4 \right) \\
& \Rightarrow \dfrac{2}{3}y+4=4y-16 \\
& \Rightarrow \dfrac{2}{3}y=4y-20 \\
& \Rightarrow 4y-\dfrac{2}{3}y=20 \\
& \Rightarrow \dfrac{12y-2y}{3}=20 \\
& \Rightarrow \dfrac{10y}{3}=20 \\
\end{align}$
$\begin{align}
& \Rightarrow y=\dfrac{20\times 3}{10} \\
& \Rightarrow y=6 \\
\end{align}$
Thus, the present age of Kinjal is 6 years.
Now, to find the value of x, which gives the present age of Veena, we will substitute this value of y back in the expression obtained from (1), which is $x=\dfrac{2}{3}y$.
Thus $x=\dfrac{2}{3}\times 6$
$\Rightarrow x=4$
Thus the present age of Veena is 4 years.
Note: The solution obtained, the present ages of Veena and Kinjal can be verified by checking if these values satisfy the given conditions.
For the first condition, the ratio of their present ages is $x:y=4:6=2:3$. Thus the first condition is satisfied.
For the second condition, the ratio of Veena’s age after 4 years and Kinjal’s age 4 years before, $\left( x+4 \right):\left( y-4 \right)=8:2=4:1$. Hence, the second condition is also satisfied.
Thus, we have verified that the values of x and y obtained, 4 and 6 respectively is the correct answer.
Complete step-by-step answer:
Let us assume that Veena’s present age is x years, and Kinjal’s present age is y years.
Based on the first condition, the ratio of these two ages is 2:3.
Thus, $\dfrac{x}{y}=\dfrac{2}{3}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right)$
For the second condition, we know that since Veena’s present age is x, her age after 4 years will be $x+4$ years. Similarly, since Kinjal’s present age is y, age 4 years before would have been $y-4$years.
The ratio of these two ages is 4:1.
Hence, $\dfrac{x+4}{y-4}=\dfrac{4}{1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right)$
From (1), we obtain$x=\dfrac{2}{3}y$. Substituting this in equation (2), we get
$\begin{align}
& x+4=4\left( y-4 \right) \\
& \Rightarrow \dfrac{2}{3}y+4=4y-16 \\
& \Rightarrow \dfrac{2}{3}y=4y-20 \\
& \Rightarrow 4y-\dfrac{2}{3}y=20 \\
& \Rightarrow \dfrac{12y-2y}{3}=20 \\
& \Rightarrow \dfrac{10y}{3}=20 \\
\end{align}$
$\begin{align}
& \Rightarrow y=\dfrac{20\times 3}{10} \\
& \Rightarrow y=6 \\
\end{align}$
Thus, the present age of Kinjal is 6 years.
Now, to find the value of x, which gives the present age of Veena, we will substitute this value of y back in the expression obtained from (1), which is $x=\dfrac{2}{3}y$.
Thus $x=\dfrac{2}{3}\times 6$
$\Rightarrow x=4$
Thus the present age of Veena is 4 years.
Note: The solution obtained, the present ages of Veena and Kinjal can be verified by checking if these values satisfy the given conditions.
For the first condition, the ratio of their present ages is $x:y=4:6=2:3$. Thus the first condition is satisfied.
For the second condition, the ratio of Veena’s age after 4 years and Kinjal’s age 4 years before, $\left( x+4 \right):\left( y-4 \right)=8:2=4:1$. Hence, the second condition is also satisfied.
Thus, we have verified that the values of x and y obtained, 4 and 6 respectively is the correct answer.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

