Answer
Verified
426.6k+ views
Hint: We first assume the constant ratio. Multiplying with the ratio we get the numbers. Then we find the numbers increased by 4 and form the linear equation with the new ratio of $2:3$. We solve the equation to get the value of x and solution of the problem.
Complete step by step answer:
The ratio between two numbers is $3:5$. We take x as the ratio constant.
So, the numbers are 3x and 5x.
Now the given condition is that if each number is increased by 4, the ratio becomes $2:3$.
After increasing every number by 4, the numbers become $\left( 3x+4 \right)$ and $\left( 5x+4 \right)$.
The ratio of those two numbers are $\dfrac{\left( 3x+4 \right)}{\left( 5x+4 \right)}$ which is equal to $2:3$.
We can make this into a linear equation by $\dfrac{\left( 3x+4 \right)}{\left( 5x+4 \right)}=\dfrac{2}{3}$.
We solve the equation by finding the value of x.
$\begin{align}
& \dfrac{\left( 3x+4 \right)}{\left( 5x+4 \right)}=\dfrac{2}{3} \\
& \Rightarrow 3\left( 3x+4 \right)=2\left( 5x+4 \right) \\
& \Rightarrow 12-8=10x-9x \\
& \Rightarrow x=4 \\
\end{align}$
The value of x is 4 which is the constant ratio.
The numbers were 3x and 5x. So, they are $3\times 4=12$ and $5\times 4=20$.
So, the correct answer is “Option A”.
Note: The constant always has to be positive. We can also do this process in a backward way where we first the ratio constant for $2:3$. Then we get the ratio of $3:5$ by subtracting 4 from the previous numbers. We follow the same process to find the solution.
Complete step by step answer:
The ratio between two numbers is $3:5$. We take x as the ratio constant.
So, the numbers are 3x and 5x.
Now the given condition is that if each number is increased by 4, the ratio becomes $2:3$.
After increasing every number by 4, the numbers become $\left( 3x+4 \right)$ and $\left( 5x+4 \right)$.
The ratio of those two numbers are $\dfrac{\left( 3x+4 \right)}{\left( 5x+4 \right)}$ which is equal to $2:3$.
We can make this into a linear equation by $\dfrac{\left( 3x+4 \right)}{\left( 5x+4 \right)}=\dfrac{2}{3}$.
We solve the equation by finding the value of x.
$\begin{align}
& \dfrac{\left( 3x+4 \right)}{\left( 5x+4 \right)}=\dfrac{2}{3} \\
& \Rightarrow 3\left( 3x+4 \right)=2\left( 5x+4 \right) \\
& \Rightarrow 12-8=10x-9x \\
& \Rightarrow x=4 \\
\end{align}$
The value of x is 4 which is the constant ratio.
The numbers were 3x and 5x. So, they are $3\times 4=12$ and $5\times 4=20$.
So, the correct answer is “Option A”.
Note: The constant always has to be positive. We can also do this process in a backward way where we first the ratio constant for $2:3$. Then we get the ratio of $3:5$ by subtracting 4 from the previous numbers. We follow the same process to find the solution.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE