
The ratio between the curved surface area and the total surface area of a right circular cylinder is 1:2. Find the volume of the cylinder, if its total surface area is $616c{m^2}$.
Answer
622.5k+ views
Hint-Using the formula of curved surface area of and total surface area of cylinder first let us find out the height and radius of the cylinder and using this let us find out the volume.
Curved surface area and total surface area are in the ratio of 1:2
So, if total surface area=$616c{m^2}$,Curved surface area=$\dfrac{{616}}{2} = 308c{m^2}$
Curved surface area = $2\pi rh = 308$
We know that total surface area of cylinder is given by $2\pi rh + 2\pi {r^2}$
Let's put $2\pi rh$ is nothing but equal to the curved surface area
So, we can write total surface area=308+$2\pi {r^2}$
So, we get $2\pi {r^2}$=616-308=308
$r = \sqrt {\dfrac{{308 \times 7}}{{2 \times 22}}} = 7cm$
From this we got the value of radius = r = 7cm
Now, let us find out the value of height
We have $2\pi rh = 308$, from this let us try to find out the value of h
So, we get $\begin{gathered}
2 \times \dfrac{{22}}{7} \times 7 \times h = 308 \\
\Rightarrow h = \dfrac{{308 \times 7}}{{2 \times 22 \times 7}} = 7cm \\
\end{gathered} $
So, now we have radius r=7cm, height h=7cm
Now, let us find out the volume
We know that the volume of the cylinder is given by the formula
$\begin{gathered}
V = \pi {r^2}h \\
\Rightarrow V = \dfrac{{22}}{7} \times 7 \times 7 \times 7 = 1078cubic.cm \\
\end{gathered} $
So, from this we can write the volume of the cylinder =1078 cubic centimetres
Note: Make use of the appropriate formulas for curved surface area and total surface area of the cylinder when solving the problem. Also, make sure to represent the volume in cubic units.
Curved surface area and total surface area are in the ratio of 1:2
So, if total surface area=$616c{m^2}$,Curved surface area=$\dfrac{{616}}{2} = 308c{m^2}$
Curved surface area = $2\pi rh = 308$
We know that total surface area of cylinder is given by $2\pi rh + 2\pi {r^2}$
Let's put $2\pi rh$ is nothing but equal to the curved surface area
So, we can write total surface area=308+$2\pi {r^2}$
So, we get $2\pi {r^2}$=616-308=308
$r = \sqrt {\dfrac{{308 \times 7}}{{2 \times 22}}} = 7cm$
From this we got the value of radius = r = 7cm
Now, let us find out the value of height
We have $2\pi rh = 308$, from this let us try to find out the value of h
So, we get $\begin{gathered}
2 \times \dfrac{{22}}{7} \times 7 \times h = 308 \\
\Rightarrow h = \dfrac{{308 \times 7}}{{2 \times 22 \times 7}} = 7cm \\
\end{gathered} $
So, now we have radius r=7cm, height h=7cm
Now, let us find out the volume
We know that the volume of the cylinder is given by the formula
$\begin{gathered}
V = \pi {r^2}h \\
\Rightarrow V = \dfrac{{22}}{7} \times 7 \times 7 \times 7 = 1078cubic.cm \\
\end{gathered} $
So, from this we can write the volume of the cylinder =1078 cubic centimetres
Note: Make use of the appropriate formulas for curved surface area and total surface area of the cylinder when solving the problem. Also, make sure to represent the volume in cubic units.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

What are the major achievements of the UNO class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE

Give 5 examples of refraction of light in daily life

