Answer
Verified
367.2k+ views
Hint: The given question revolves around the concepts and principles of probability. One must know the basics of probability before attempting the given problem. Simplification rules and transposition are of great significance in solving such type of questions.
Complete step by step solution:
In the problem, we are given that the probability of not guessing the correct answer to a question is $\dfrac{2}{3}$.
Also, we are given that the probability of guessing the correct answer to a question is $\left( {\dfrac{x}{2}} \right)$.
Now, we know that the sum of the probabilities in a probability distribution table consisting of all possible ways of doing a certain thing is one. Hence, the sum of probability of happening and not happening of a certain thing is one.
Hence, the sum of probabilities of guessing the correct answer to a question and not guessing the correct answer to a question is one.
Let $P\left( {correct} \right)$ denote the probability of guessing the correct answer and $P\left( {not\,correct} \right)$ denote the probability of not guessing the correct answer.
So, we get, $P\left( {correct} \right) + P\left( {not\,correct} \right) = 1$
Now, we have $P\left( {correct} \right) = \left( {\dfrac{x}{2}} \right)$ and $P\left( {not\,correct} \right) = \dfrac{2}{3}$.
So, substituting the values of probabilities in the equation, we get,
$ \Rightarrow \dfrac{x}{2} + \dfrac{2}{3} = 1$
Now, we have to find the value of x from the above equation.
So, shifting all the constant terms to the right side of equation, we get,
$ \Rightarrow \dfrac{x}{2} = 1 - \dfrac{2}{3}$
Simplifying the expression further, we get,
$ \Rightarrow \dfrac{x}{2} = \dfrac{1}{3}$
Multiplying both the sides of the equation by $2$ , we get,
$ \Rightarrow x = \dfrac{2}{3}$
Hence, the value of x is $\dfrac{2}{3}$. So, option (C) is correct.
Note:
Probability is a measure of how likely an event is. The value is expressed from zero to one. The sum of all possible probabilities is always one. There are many ways of solving equation as the one formed in the question itself. Method of transposition involves doing the exact same thing on both sides of an equation with the aim of bringing like terms together and isolating the variable or the unknown term in order to simplify the equation and finding the value of the required parameter.
Complete step by step solution:
In the problem, we are given that the probability of not guessing the correct answer to a question is $\dfrac{2}{3}$.
Also, we are given that the probability of guessing the correct answer to a question is $\left( {\dfrac{x}{2}} \right)$.
Now, we know that the sum of the probabilities in a probability distribution table consisting of all possible ways of doing a certain thing is one. Hence, the sum of probability of happening and not happening of a certain thing is one.
Hence, the sum of probabilities of guessing the correct answer to a question and not guessing the correct answer to a question is one.
Let $P\left( {correct} \right)$ denote the probability of guessing the correct answer and $P\left( {not\,correct} \right)$ denote the probability of not guessing the correct answer.
So, we get, $P\left( {correct} \right) + P\left( {not\,correct} \right) = 1$
Now, we have $P\left( {correct} \right) = \left( {\dfrac{x}{2}} \right)$ and $P\left( {not\,correct} \right) = \dfrac{2}{3}$.
So, substituting the values of probabilities in the equation, we get,
$ \Rightarrow \dfrac{x}{2} + \dfrac{2}{3} = 1$
Now, we have to find the value of x from the above equation.
So, shifting all the constant terms to the right side of equation, we get,
$ \Rightarrow \dfrac{x}{2} = 1 - \dfrac{2}{3}$
Simplifying the expression further, we get,
$ \Rightarrow \dfrac{x}{2} = \dfrac{1}{3}$
Multiplying both the sides of the equation by $2$ , we get,
$ \Rightarrow x = \dfrac{2}{3}$
Hence, the value of x is $\dfrac{2}{3}$. So, option (C) is correct.
Note:
Probability is a measure of how likely an event is. The value is expressed from zero to one. The sum of all possible probabilities is always one. There are many ways of solving equation as the one formed in the question itself. Method of transposition involves doing the exact same thing on both sides of an equation with the aim of bringing like terms together and isolating the variable or the unknown term in order to simplify the equation and finding the value of the required parameter.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE