
The price of two tables and three chairs is Rs 340. The cost of a table of Rs 20 more than a chair. Find the cost of the table and the chair.
Answer
598.8k+ views
Hint: Assume the cost of the table is Rs x, and that of the chair is Rs y. Form two linear equations in terms of x and y using the statement of the problem. Solve the system of equations using the substitution method or elimination method or matrix method. Hence find the value of x and y satisfying both the questions. The value of x will be the cost of the table, and the value of y will be the cost of the chair.
Complete step-by-step answer:
Let x be the cost of the table and y be the cost of the chair.
Hence, we have the cost of two tables = 2x and the cost of three chairs = 3y.
Hence, the cost of two tables and three chairs = 2x+3y.
Also, given that the cost of two tables and three chairs = 340.
Hence, we have 2x+3y=340 (i)
Also, it is given that the cost of a table is Rs 20 more than the cost of a chair.
Hence, we have x = y+20 (ii).
Solving the system using the substitution method:
Substituting the value of x from equation (ii) in equation (i), we get
2(y+20)+3y=340
Applying distributive law, a(b+c) = ab+ac , we get,
2y+40+3y = 340
i.e. 5y+40 = 340
Subtracting 40 from both sides of the equation we get
5y+40-40 = 340-40
i.e. 5y = 300
Dividing both sides of the equation by 5, we get
$\begin{align}
& \dfrac{5y}{5}=\dfrac{300}{5} \\
& \Rightarrow y=60 \\
\end{align}$
Hence, we have y = 60.
Substituting the value of y in equation (ii), we get
x = 60+20
i.e. x = 80.
Hence the cost of a table is Rs 80, and that of a chair is Rs 60.
Note: In the above solution, we used the substitution method to find the value of x and y.
We can also solve the system by using Matrices.
Here augmented matrix A is given by
$A=\left[ \begin{matrix}
2 & 3 & 340 \\
1 & -1 & 20 \\
\end{matrix} \right]$
We use row transformations to convert the given matrix in row reduced form.
Apply ${{R}_{2}}\to 2{{R}_{2}}-{{R}_{1}}$, we get
$\begin{align}
& R=\left[ \begin{matrix}
2 & 3 & 340 \\
2-2 & -2-3 & 40-340 \\
\end{matrix} \right] \\
& \Rightarrow R=\left[ \begin{matrix}
2 & 3 & 340 \\
0 & -5 & -300 \\
\end{matrix} \right] \\
\end{align}$
where R is the row reduced form of A.
Hence, we have
-5y = -300
Dividing both sides by -5, we get
y =60
and 2x+3y=340
i.e. 2x+180 = 340
Subtracting 340 from both sides, we get
2x+180-180 = 340-180
i.e. 2x = 160
Dividing both sides by 2 we get
x = 80
Hence x = 80 and y = 60 is the solution of the given system.
Complete step-by-step answer:
Let x be the cost of the table and y be the cost of the chair.
Hence, we have the cost of two tables = 2x and the cost of three chairs = 3y.
Hence, the cost of two tables and three chairs = 2x+3y.
Also, given that the cost of two tables and three chairs = 340.
Hence, we have 2x+3y=340 (i)
Also, it is given that the cost of a table is Rs 20 more than the cost of a chair.
Hence, we have x = y+20 (ii).
Solving the system using the substitution method:
Substituting the value of x from equation (ii) in equation (i), we get
2(y+20)+3y=340
Applying distributive law, a(b+c) = ab+ac , we get,
2y+40+3y = 340
i.e. 5y+40 = 340
Subtracting 40 from both sides of the equation we get
5y+40-40 = 340-40
i.e. 5y = 300
Dividing both sides of the equation by 5, we get
$\begin{align}
& \dfrac{5y}{5}=\dfrac{300}{5} \\
& \Rightarrow y=60 \\
\end{align}$
Hence, we have y = 60.
Substituting the value of y in equation (ii), we get
x = 60+20
i.e. x = 80.
Hence the cost of a table is Rs 80, and that of a chair is Rs 60.
Note: In the above solution, we used the substitution method to find the value of x and y.
We can also solve the system by using Matrices.
Here augmented matrix A is given by
$A=\left[ \begin{matrix}
2 & 3 & 340 \\
1 & -1 & 20 \\
\end{matrix} \right]$
We use row transformations to convert the given matrix in row reduced form.
Apply ${{R}_{2}}\to 2{{R}_{2}}-{{R}_{1}}$, we get
$\begin{align}
& R=\left[ \begin{matrix}
2 & 3 & 340 \\
2-2 & -2-3 & 40-340 \\
\end{matrix} \right] \\
& \Rightarrow R=\left[ \begin{matrix}
2 & 3 & 340 \\
0 & -5 & -300 \\
\end{matrix} \right] \\
\end{align}$
where R is the row reduced form of A.
Hence, we have
-5y = -300
Dividing both sides by -5, we get
y =60
and 2x+3y=340
i.e. 2x+180 = 340
Subtracting 340 from both sides, we get
2x+180-180 = 340-180
i.e. 2x = 160
Dividing both sides by 2 we get
x = 80
Hence x = 80 and y = 60 is the solution of the given system.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

