
The position x of a particle varies with time according to the relation \[x={{t}^{3}}+3{{t}^{2}}+2t\]. Find velocity and acceleration as functions of time.
Answer
513.3k+ views
Hint: First derivative of function ‘x’ with respect to time gives velocity and double derivative of ‘x’ gives acceleration.
Complete step-by-step answer:
The position of the particle is given by variable x, and it varies according to time.
Given the relation\[\Rightarrow x={{t}^{3}}+3{{t}^{2}}+2t-(1)\]
To find the velocity, which is the rate of change of displacement.
The first derivative of Eqn(1) gives us the velocity and the second derivation will give the acceleration.
\[\therefore \]Velocity \[=\dfrac{dx}{dt}\]
\[\begin{align}
& \overrightarrow{v}=\dfrac{d}{dt}\left( x \right)=\dfrac{d}{dt}\left( {{t}^{3}}+3{{t}^{2}}+2t \right) \\
& \Rightarrow \overrightarrow{v}=3{{t}^{2}}+2\left( 3t \right)+2 \\
& \overrightarrow{v}=3{{t}^{2}}+6t+2 \\
\end{align}\]
The unit of velocity is meter per second (m/sec).
\[\therefore \overrightarrow{v}=\left( 3{{t}^{2}}+6t+2 \right)\]m/sec.
To find acceleration, which is the rate of change of velocity.
Acceleration, \[\overrightarrow{a}=\dfrac{d\overrightarrow{v}}{dt}\]
\[\begin{align}
& \overrightarrow{a}=\dfrac{d}{dt}\left( \overrightarrow{v} \right)=\dfrac{d}{dt}\left( 3{{t}^{2}}+6t+2 \right) \\
& \overrightarrow{a}=2\times \left( 3t \right)+6=6t+6 \\
\end{align}\]
The unit of acceleration is meter per second square \[\left( m/{{\sec }^{2}} \right)\].
\[\therefore \] \[\overrightarrow{a}=\left( 6t+6 \right)m/{{\sec }^{2}}\]
\[\therefore \]Velocity of the function, \[\overrightarrow{v}=\left( 3{{t}^{2}}+6t+2 \right)\]m/sec.
Acceleration of the function, \[\overrightarrow{a}=\left( 6t+6 \right)m/{{\sec }^{2}}\]
Note: We know velocity\[=\dfrac{Displacement}{time}\]and acceleration\[=\dfrac{velocity}{time}\], here the velocity is taken as the rate of change of displacement w.r.t the time, so differentiation \[\left( \dfrac{dx}{dt} \right)\]is done.
Complete step-by-step answer:
The position of the particle is given by variable x, and it varies according to time.
Given the relation\[\Rightarrow x={{t}^{3}}+3{{t}^{2}}+2t-(1)\]
To find the velocity, which is the rate of change of displacement.
The first derivative of Eqn(1) gives us the velocity and the second derivation will give the acceleration.
\[\therefore \]Velocity \[=\dfrac{dx}{dt}\]
\[\begin{align}
& \overrightarrow{v}=\dfrac{d}{dt}\left( x \right)=\dfrac{d}{dt}\left( {{t}^{3}}+3{{t}^{2}}+2t \right) \\
& \Rightarrow \overrightarrow{v}=3{{t}^{2}}+2\left( 3t \right)+2 \\
& \overrightarrow{v}=3{{t}^{2}}+6t+2 \\
\end{align}\]
The unit of velocity is meter per second (m/sec).
\[\therefore \overrightarrow{v}=\left( 3{{t}^{2}}+6t+2 \right)\]m/sec.
To find acceleration, which is the rate of change of velocity.
Acceleration, \[\overrightarrow{a}=\dfrac{d\overrightarrow{v}}{dt}\]
\[\begin{align}
& \overrightarrow{a}=\dfrac{d}{dt}\left( \overrightarrow{v} \right)=\dfrac{d}{dt}\left( 3{{t}^{2}}+6t+2 \right) \\
& \overrightarrow{a}=2\times \left( 3t \right)+6=6t+6 \\
\end{align}\]
The unit of acceleration is meter per second square \[\left( m/{{\sec }^{2}} \right)\].
\[\therefore \] \[\overrightarrow{a}=\left( 6t+6 \right)m/{{\sec }^{2}}\]
\[\therefore \]Velocity of the function, \[\overrightarrow{v}=\left( 3{{t}^{2}}+6t+2 \right)\]m/sec.
Acceleration of the function, \[\overrightarrow{a}=\left( 6t+6 \right)m/{{\sec }^{2}}\]
Note: We know velocity\[=\dfrac{Displacement}{time}\]and acceleration\[=\dfrac{velocity}{time}\], here the velocity is taken as the rate of change of displacement w.r.t the time, so differentiation \[\left( \dfrac{dx}{dt} \right)\]is done.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What constitutes the central nervous system How are class 10 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
