Answer
Verified
388.5k+ views
Hint: For solving this question you should know about finding the remainder by remainder theorem directly. In this problem we can also find the remainder by the help of a long division method but that will be a long method. So, we use the remainder theorem here for solving this.
Complete step by step answer:
According to our question it is asked to us that the polynomial \[p\left( x \right)=a{{x}^{3}}+4{{x}^{2}}+3x-4\] and \[q\left( x \right)={{x}^{3}}-4x+a\] leave same remainder when divided by \[\left( x-3 \right)\]. Find a and hence find the remainder when \[p\left( x \right)\] is divided by \[\left( x-2 \right)\].
So, as we know that we can calculate the remainder by the long division method in this problem and that is a big method for this, so we will use the remainder theorem here for solving this problem.
Given, \[a{{x}^{3}}+4{{x}^{2}}+3x-4=0\] & \[{{x}^{3}}-4x+a=0\] leave same remainder when divided by \[x-3\].
\[p\left( x \right)=a{{x}^{3}}+4{{x}^{2}}+3x-4\]
\[q\left( x \right)={{x}^{3}}-4x+a\]
Remainder theorem,
\[\begin{align}
& p\left( 3 \right)=q\left( 3 \right) \\
& a{{\left( 3 \right)}^{3}}+4{{\left( 3 \right)}^{2}}+3\left( 3 \right)-4={{3}^{3}}-4\left( 3 \right)+a \\
& 27a+36+9-4=27-12+a \\
& 26a=15-41 \\
& 26a=-26 \\
& \therefore a=-1 \\
\end{align}\]
And if substitute values here,
\[p\left( x \right)=-{{x}^{3}}+4{{x}^{2}}+3a-4\]
When divided by \[\left( x-2 \right)\]
\[p\left( 2 \right)=-{{\left( 2 \right)}^{3}}+4{{\left( 2 \right)}^{2}}+3\left( 2 \right)-4\]
\[\begin{align}
& =-8+16+6-4 \\
& =8+2 \\
\end{align}\]
\[=10\]
So, the remainder is 10.
Note: While solving this type of questions you should be aware that if we want to get quotients also with the remainder then we will calculate the remainder by long division method for that. And if we don’t want to calculate quotients then use the remainder theorem for getting the remainder.
Complete step by step answer:
According to our question it is asked to us that the polynomial \[p\left( x \right)=a{{x}^{3}}+4{{x}^{2}}+3x-4\] and \[q\left( x \right)={{x}^{3}}-4x+a\] leave same remainder when divided by \[\left( x-3 \right)\]. Find a and hence find the remainder when \[p\left( x \right)\] is divided by \[\left( x-2 \right)\].
So, as we know that we can calculate the remainder by the long division method in this problem and that is a big method for this, so we will use the remainder theorem here for solving this problem.
Given, \[a{{x}^{3}}+4{{x}^{2}}+3x-4=0\] & \[{{x}^{3}}-4x+a=0\] leave same remainder when divided by \[x-3\].
\[p\left( x \right)=a{{x}^{3}}+4{{x}^{2}}+3x-4\]
\[q\left( x \right)={{x}^{3}}-4x+a\]
Remainder theorem,
\[\begin{align}
& p\left( 3 \right)=q\left( 3 \right) \\
& a{{\left( 3 \right)}^{3}}+4{{\left( 3 \right)}^{2}}+3\left( 3 \right)-4={{3}^{3}}-4\left( 3 \right)+a \\
& 27a+36+9-4=27-12+a \\
& 26a=15-41 \\
& 26a=-26 \\
& \therefore a=-1 \\
\end{align}\]
And if substitute values here,
\[p\left( x \right)=-{{x}^{3}}+4{{x}^{2}}+3a-4\]
When divided by \[\left( x-2 \right)\]
\[p\left( 2 \right)=-{{\left( 2 \right)}^{3}}+4{{\left( 2 \right)}^{2}}+3\left( 2 \right)-4\]
\[\begin{align}
& =-8+16+6-4 \\
& =8+2 \\
\end{align}\]
\[=10\]
So, the remainder is 10.
Note: While solving this type of questions you should be aware that if we want to get quotients also with the remainder then we will calculate the remainder by long division method for that. And if we don’t want to calculate quotients then use the remainder theorem for getting the remainder.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE