
The points with the coordinates $ (2a,3a),\,(3b,2b)\,{\text{and}}\,(c,c) $ are collinear:
A.For no value of $ a,\,b,\,c $
B.For all value of $ a,\,b,\,c $
C.If $ a,\,\dfrac{c}{5} $ are in HP
D.If $ a,\,\dfrac{{2c}}{5},\,b $ are in HP
Answer
576k+ views
Hint: Here before solving this question we need to know the following formula: -
Using determinant points are collinear if
$ \left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right| = 0\, $
Where,
$ ({x_1},{y_1}),({x_2},{y_2})\,{\text{and}}\,({x_3},{y_3}) $ are the coordinates
Complete step-by-step answer:
According to this question we have,
$ \begin{gathered}
({x_1},{y_1}) = (2a,3a) \\
({x_2},{y_2}) = (3b,2b)\,{\text{and}}\, \\
({x_3},{y_3}) = (c,c) \\
\end{gathered} $
Substitute this values on equation (1)
$ \begin{gathered}
\left| {\begin{array}{*{20}{c}}
{2a}&{3a}&1 \\
{3b}&{2b}&1 \\
c&c&1
\end{array}} \right| = 0 \\
{\text{Applying}}\,{R_2} \to {R_2} - {R_1}\,{\text{and}}\,{R_3} \to {R_3} - {R_1} \\
\left| {\begin{array}{*{20}{c}}
{2a}&{3a}&1 \\
{3b - 2a}&{2b - 3a}&0 \\
{c - 2a}&{c - 3a}&0
\end{array}} \right| = 0 \\
\end{gathered} $
Expanding along column 3, we get
$ \begin{gathered}
= \left| {\begin{array}{*{20}{c}}
{3b - 2a}&{2b - 3a} \\
{c - 2a}&{c - 3a}
\end{array}} \right| = 0 \\
\left( {3b - 2a} \right)\left( {c - 3a} \right) - \left( {2b - 3a} \right)\left( {c - 2a} \right) = 0 \\
\left( {3bc - 9ab - 2ac + 6{a^2}} \right) - \left( {2bc - 4ab - 3ac + 6{a^2}} \right) = 0 \\
3bc - 9ab - 2ac + 6{a^2} - 2bc + 4ab + 3ac - 6{a^2} = 0 \\
- 5ab + bc + ac = 0 \\
bc + ac = 5ab \\
c(a + b) = 5ab \\
\dfrac{c}{5} = \dfrac{{ab}}{{a + b}} \\
\dfrac{{2c}}{5} = \dfrac{{2ab}}{{a + b}} \\
\end{gathered} $
Thus, $ a,\dfrac{{2c}}{5},b $ are inHP
So, the correct answer is “Option D”.
Note: Determinant properties are used before expanding the determinant. Also, two numbers a and b are in HP can be shown as $ \dfrac{1}{a},\dfrac{1}{b} $ and adding this we get $ \dfrac{1}{a} + \dfrac{1}{b} = \dfrac{{a + b}}{{ab}} $
Using determinant points are collinear if
$ \left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right| = 0\, $
Where,
$ ({x_1},{y_1}),({x_2},{y_2})\,{\text{and}}\,({x_3},{y_3}) $ are the coordinates
Complete step-by-step answer:
According to this question we have,
$ \begin{gathered}
({x_1},{y_1}) = (2a,3a) \\
({x_2},{y_2}) = (3b,2b)\,{\text{and}}\, \\
({x_3},{y_3}) = (c,c) \\
\end{gathered} $
Substitute this values on equation (1)
$ \begin{gathered}
\left| {\begin{array}{*{20}{c}}
{2a}&{3a}&1 \\
{3b}&{2b}&1 \\
c&c&1
\end{array}} \right| = 0 \\
{\text{Applying}}\,{R_2} \to {R_2} - {R_1}\,{\text{and}}\,{R_3} \to {R_3} - {R_1} \\
\left| {\begin{array}{*{20}{c}}
{2a}&{3a}&1 \\
{3b - 2a}&{2b - 3a}&0 \\
{c - 2a}&{c - 3a}&0
\end{array}} \right| = 0 \\
\end{gathered} $
Expanding along column 3, we get
$ \begin{gathered}
= \left| {\begin{array}{*{20}{c}}
{3b - 2a}&{2b - 3a} \\
{c - 2a}&{c - 3a}
\end{array}} \right| = 0 \\
\left( {3b - 2a} \right)\left( {c - 3a} \right) - \left( {2b - 3a} \right)\left( {c - 2a} \right) = 0 \\
\left( {3bc - 9ab - 2ac + 6{a^2}} \right) - \left( {2bc - 4ab - 3ac + 6{a^2}} \right) = 0 \\
3bc - 9ab - 2ac + 6{a^2} - 2bc + 4ab + 3ac - 6{a^2} = 0 \\
- 5ab + bc + ac = 0 \\
bc + ac = 5ab \\
c(a + b) = 5ab \\
\dfrac{c}{5} = \dfrac{{ab}}{{a + b}} \\
\dfrac{{2c}}{5} = \dfrac{{2ab}}{{a + b}} \\
\end{gathered} $
Thus, $ a,\dfrac{{2c}}{5},b $ are inHP
So, the correct answer is “Option D”.
Note: Determinant properties are used before expanding the determinant. Also, two numbers a and b are in HP can be shown as $ \dfrac{1}{a},\dfrac{1}{b} $ and adding this we get $ \dfrac{1}{a} + \dfrac{1}{b} = \dfrac{{a + b}}{{ab}} $
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

