
The points with the coordinates $ (2a,3a),\,(3b,2b)\,{\text{and}}\,(c,c) $ are collinear:
A.For no value of $ a,\,b,\,c $
B.For all value of $ a,\,b,\,c $
C.If $ a,\,\dfrac{c}{5} $ are in HP
D.If $ a,\,\dfrac{{2c}}{5},\,b $ are in HP
Answer
589.8k+ views
Hint: Here before solving this question we need to know the following formula: -
Using determinant points are collinear if
$ \left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right| = 0\, $
Where,
$ ({x_1},{y_1}),({x_2},{y_2})\,{\text{and}}\,({x_3},{y_3}) $ are the coordinates
Complete step-by-step answer:
According to this question we have,
$ \begin{gathered}
({x_1},{y_1}) = (2a,3a) \\
({x_2},{y_2}) = (3b,2b)\,{\text{and}}\, \\
({x_3},{y_3}) = (c,c) \\
\end{gathered} $
Substitute this values on equation (1)
$ \begin{gathered}
\left| {\begin{array}{*{20}{c}}
{2a}&{3a}&1 \\
{3b}&{2b}&1 \\
c&c&1
\end{array}} \right| = 0 \\
{\text{Applying}}\,{R_2} \to {R_2} - {R_1}\,{\text{and}}\,{R_3} \to {R_3} - {R_1} \\
\left| {\begin{array}{*{20}{c}}
{2a}&{3a}&1 \\
{3b - 2a}&{2b - 3a}&0 \\
{c - 2a}&{c - 3a}&0
\end{array}} \right| = 0 \\
\end{gathered} $
Expanding along column 3, we get
$ \begin{gathered}
= \left| {\begin{array}{*{20}{c}}
{3b - 2a}&{2b - 3a} \\
{c - 2a}&{c - 3a}
\end{array}} \right| = 0 \\
\left( {3b - 2a} \right)\left( {c - 3a} \right) - \left( {2b - 3a} \right)\left( {c - 2a} \right) = 0 \\
\left( {3bc - 9ab - 2ac + 6{a^2}} \right) - \left( {2bc - 4ab - 3ac + 6{a^2}} \right) = 0 \\
3bc - 9ab - 2ac + 6{a^2} - 2bc + 4ab + 3ac - 6{a^2} = 0 \\
- 5ab + bc + ac = 0 \\
bc + ac = 5ab \\
c(a + b) = 5ab \\
\dfrac{c}{5} = \dfrac{{ab}}{{a + b}} \\
\dfrac{{2c}}{5} = \dfrac{{2ab}}{{a + b}} \\
\end{gathered} $
Thus, $ a,\dfrac{{2c}}{5},b $ are inHP
So, the correct answer is “Option D”.
Note: Determinant properties are used before expanding the determinant. Also, two numbers a and b are in HP can be shown as $ \dfrac{1}{a},\dfrac{1}{b} $ and adding this we get $ \dfrac{1}{a} + \dfrac{1}{b} = \dfrac{{a + b}}{{ab}} $
Using determinant points are collinear if
$ \left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right| = 0\, $
Where,
$ ({x_1},{y_1}),({x_2},{y_2})\,{\text{and}}\,({x_3},{y_3}) $ are the coordinates
Complete step-by-step answer:
According to this question we have,
$ \begin{gathered}
({x_1},{y_1}) = (2a,3a) \\
({x_2},{y_2}) = (3b,2b)\,{\text{and}}\, \\
({x_3},{y_3}) = (c,c) \\
\end{gathered} $
Substitute this values on equation (1)
$ \begin{gathered}
\left| {\begin{array}{*{20}{c}}
{2a}&{3a}&1 \\
{3b}&{2b}&1 \\
c&c&1
\end{array}} \right| = 0 \\
{\text{Applying}}\,{R_2} \to {R_2} - {R_1}\,{\text{and}}\,{R_3} \to {R_3} - {R_1} \\
\left| {\begin{array}{*{20}{c}}
{2a}&{3a}&1 \\
{3b - 2a}&{2b - 3a}&0 \\
{c - 2a}&{c - 3a}&0
\end{array}} \right| = 0 \\
\end{gathered} $
Expanding along column 3, we get
$ \begin{gathered}
= \left| {\begin{array}{*{20}{c}}
{3b - 2a}&{2b - 3a} \\
{c - 2a}&{c - 3a}
\end{array}} \right| = 0 \\
\left( {3b - 2a} \right)\left( {c - 3a} \right) - \left( {2b - 3a} \right)\left( {c - 2a} \right) = 0 \\
\left( {3bc - 9ab - 2ac + 6{a^2}} \right) - \left( {2bc - 4ab - 3ac + 6{a^2}} \right) = 0 \\
3bc - 9ab - 2ac + 6{a^2} - 2bc + 4ab + 3ac - 6{a^2} = 0 \\
- 5ab + bc + ac = 0 \\
bc + ac = 5ab \\
c(a + b) = 5ab \\
\dfrac{c}{5} = \dfrac{{ab}}{{a + b}} \\
\dfrac{{2c}}{5} = \dfrac{{2ab}}{{a + b}} \\
\end{gathered} $
Thus, $ a,\dfrac{{2c}}{5},b $ are inHP
So, the correct answer is “Option D”.
Note: Determinant properties are used before expanding the determinant. Also, two numbers a and b are in HP can be shown as $ \dfrac{1}{a},\dfrac{1}{b} $ and adding this we get $ \dfrac{1}{a} + \dfrac{1}{b} = \dfrac{{a + b}}{{ab}} $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

