Answer

Verified

384.9k+ views

**Hint:**In this problem we have given three points. Now our aim is to find if the given points are collinear or not and the points can be plotted or not defined. To know whether the points are collinear or not we need to find the slope of any two points. So by using the slope formula we precede this problem.

**Formula used:**Slope of a line $m = \dfrac{{rise}}{{run}} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$

Where, $m = $ slope

$\left( {{x_1},{y_1}} \right) = $ Coordinate of first point in the line

$\left( {{x_2},{y_2}} \right) = $ Coordinate of second point in the line

**Complete step-by-step solution:**

The given points are $A\left( {{x_1},{y_1}} \right) = \left( {7,8} \right),B\left( {{x_2},{y_2}} \right) = \left( { - 5,2} \right)$ and $C\left( {{x_3},{y_3}} \right) = \left( {3,6} \right)$.

Now suppose three points $A\left( {{x_1},{y_2}} \right),B\left( {{x_2},{y_2}} \right)$ and $C\left( {{x_3},{y_3}} \right)$ are collinear, then slope of any two points be ${m_{AB}} = {m_{BC}} = {m_{AC}}$

Slope ${m_{AB}} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \dfrac{{2 - 8}}{{ - 5 - 7}} = \dfrac{1}{2}$

Slope ${m_{BC}} = \dfrac{{{y_3} - {y_2}}}{{{x_3} - {x_2}}} = \dfrac{{6 - 2}}{{3 + 5}} = \dfrac{1}{2}$ and

Slope ${m_{AC}} = \dfrac{{{y_3} - {y_1}}}{{{x_3} - {x_1}}} = \dfrac{{6 - 8}}{{3 - 7}} = \dfrac{1}{2}$

Therefore, slope of ${m_{AB}} = $Slope of ${m_{BC}} = $Slope of ${m_{AC}}$, that is slope of any two points are same.

Therefore, the given points $A,B$ and $C$ are collinear.

Let us plot the given points in a graph.

This showed that the points lie on the same line. So the given points are collinear.

**Therefore the answer is option (D)**

**Additional Information:**Slope formula method to find that points are collinear. Three or more points are collinear, if the slope of any two pairs of points is the same. With three points $A,B,C$, three pairs of points can be formed, they are $AB,BC,AC$.

If slope of $AB = $ slope of $BC = $ slope of $CA$, then $A$, $B$ and $C$ are collinear.

**Note:**We can observe that from the problem, suppose the given three points are not collinear then they will not lie on the same line. Slope compares the vertical change (the rise) to the horizontal change (the run) when moving from one fixed point to another along the line. A ratio comparing the change y (the rise) with the change in x (the run) is used to calculate the slope.

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE