Answer
Verified
477.6k+ views
Hint: - Perimeter of a rectangle is $2\left( {l + b} \right)$ and the area of the rectangle is$l \times b$.
Perimeter of rectangular field $ = 2\left( {l + b} \right) = 82m$
$ \Rightarrow l + b = 41m$
Let the length of the rectangular field be $Xm$ , then the breadth will be $\left( {41 - X} \right)m$.
$\because $ Area of the rectangular field $ = l \times b$
$
\Rightarrow X\left( {41 - X} \right) = 400 \\
\Rightarrow 41X - {X^2} = 400 \\
\Rightarrow {X^2} - 41X + 400 = 0 \\
$
Now, after splitting the middle term we get:
$
\Rightarrow {X^2} - 16X - 25X + 400 = 0 \\
\Rightarrow X\left( {X - 16} \right) - 25\left( {X - 16} \right) = 0 \\
\Rightarrow \left( {X - 16} \right)\left( {X - 25} \right) = 0 \\
\therefore {X_1} = 16{\text{ \& }}{X_2} = 25 \\
$
For${X_1} = 16m$, the length of the rectangle is 16m and the breadth of the rectangle is 25m.
For${X_2} = 25m$, the length of the rectangle is 25m and the breadth of the rectangle is 16m.
Hence, both sides of the rectangle are 16m and 25m.
Note: - In any of the questions while solving quadratic equations in between the problem, never ignore any of the result as it may lead to half answer or inappropriate answer.
Perimeter of rectangular field $ = 2\left( {l + b} \right) = 82m$
$ \Rightarrow l + b = 41m$
Let the length of the rectangular field be $Xm$ , then the breadth will be $\left( {41 - X} \right)m$.
$\because $ Area of the rectangular field $ = l \times b$
$
\Rightarrow X\left( {41 - X} \right) = 400 \\
\Rightarrow 41X - {X^2} = 400 \\
\Rightarrow {X^2} - 41X + 400 = 0 \\
$
Now, after splitting the middle term we get:
$
\Rightarrow {X^2} - 16X - 25X + 400 = 0 \\
\Rightarrow X\left( {X - 16} \right) - 25\left( {X - 16} \right) = 0 \\
\Rightarrow \left( {X - 16} \right)\left( {X - 25} \right) = 0 \\
\therefore {X_1} = 16{\text{ \& }}{X_2} = 25 \\
$
For${X_1} = 16m$, the length of the rectangle is 16m and the breadth of the rectangle is 25m.
For${X_2} = 25m$, the length of the rectangle is 25m and the breadth of the rectangle is 16m.
Hence, both sides of the rectangle are 16m and 25m.
Note: - In any of the questions while solving quadratic equations in between the problem, never ignore any of the result as it may lead to half answer or inappropriate answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE