
The pair of equations \[{3^{x + y}} = 81\], \[{81^{x - y}} = 3\] has
A.No solution
B.The solution \[x = 2\dfrac{1}{2}\],\[y = 2\dfrac{1}{2}\]
C.The solution \[x = 2\], \[y = 2\]
D.The solution \[x = 2\dfrac{1}{8}\],\[y = 1\dfrac{7}{8}\]
Answer
555.9k+ views
Hint: First we will first rewrite the number 81 into powers of 3 in the equation and then use the power rule that if \[{a^x} = {a^y}\], then \[x = y\]. Then we will simplify the equations to find the value of \[x\] and \[y\].
Complete step-by-step answer:
We are given that the pair of linear equations
\[{3^{x + y}} = 81{\text{ ......eq.(1)}}\]
\[{81^{x - y}} = 3{\text{ ......eq(2)}}\]
Rewriting the number 81 into powers of 3 in the equation (1), we get
\[ \Rightarrow {3^{x + y}} = {3^4}\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow x + y = 4\]
Subtracting the above equation by \[x\] on both sides, we get
\[
\Rightarrow x + y - x = 4 - x \\
\Rightarrow y = 4 - x{\text{ .......eq.(3)}} \\
\]
Rewriting the number 81 into powers of 3 in the equation (2), we get
\[
\Rightarrow {3^{4\left( {x - y} \right)}} = 3 \\
\Rightarrow {3^{4x - 4y}} = {3^1} \\
\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow 4x - 4y = 1\]
Substituting the value of \[y\] from equation (3) in the above equation, we get
\[
\Rightarrow 4x - 4\left( {4 - x} \right) = 1 \\
\Rightarrow 4x - 16 + 4x = 1 \\
\Rightarrow 8x - 16 = 1 \\
\]
Adding the above equation by 16 on both sides, we get
\[
\Rightarrow 8x - 16 + 16 = 1 + 16 \\
\Rightarrow 8x = 17 \\
\]
Dividing the above equation by 8 on both sides, we get
\[
\Rightarrow \dfrac{{8x}}{8} = \dfrac{{17}}{8} \\
\Rightarrow x = \dfrac{{17}}{8} \\
\]
Substituting the value of \[x\] in the equation (3), we get
\[
\Rightarrow y = 4 - \dfrac{{17}}{8} \\
\Rightarrow y = \dfrac{{32 - 17}}{8} \\
\Rightarrow y = \dfrac{{15}}{8} \\
\]
Writing the value of \[x\] and \[y\] into the mixed fraction, \[{\text{Quotient}}\dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\] to match with the options, we get
\[ \Rightarrow x = 2\dfrac{1}{8}\]
\[ \Rightarrow y = 1\dfrac{7}{8}\]
Hence, option D is correct.
Note: We can avoid the final steps of mixed form by matching the denominators with the options and finding the correct one. We know that a linear system of two equations with two variables is any system that can be written in the form. A solution to a system of equations is a value of \[x\] and a value of \[y\] that, when substituted into the equations, satisfies both equations at the same time.
Complete step-by-step answer:
We are given that the pair of linear equations
\[{3^{x + y}} = 81{\text{ ......eq.(1)}}\]
\[{81^{x - y}} = 3{\text{ ......eq(2)}}\]
Rewriting the number 81 into powers of 3 in the equation (1), we get
\[ \Rightarrow {3^{x + y}} = {3^4}\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow x + y = 4\]
Subtracting the above equation by \[x\] on both sides, we get
\[
\Rightarrow x + y - x = 4 - x \\
\Rightarrow y = 4 - x{\text{ .......eq.(3)}} \\
\]
Rewriting the number 81 into powers of 3 in the equation (2), we get
\[
\Rightarrow {3^{4\left( {x - y} \right)}} = 3 \\
\Rightarrow {3^{4x - 4y}} = {3^1} \\
\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow 4x - 4y = 1\]
Substituting the value of \[y\] from equation (3) in the above equation, we get
\[
\Rightarrow 4x - 4\left( {4 - x} \right) = 1 \\
\Rightarrow 4x - 16 + 4x = 1 \\
\Rightarrow 8x - 16 = 1 \\
\]
Adding the above equation by 16 on both sides, we get
\[
\Rightarrow 8x - 16 + 16 = 1 + 16 \\
\Rightarrow 8x = 17 \\
\]
Dividing the above equation by 8 on both sides, we get
\[
\Rightarrow \dfrac{{8x}}{8} = \dfrac{{17}}{8} \\
\Rightarrow x = \dfrac{{17}}{8} \\
\]
Substituting the value of \[x\] in the equation (3), we get
\[
\Rightarrow y = 4 - \dfrac{{17}}{8} \\
\Rightarrow y = \dfrac{{32 - 17}}{8} \\
\Rightarrow y = \dfrac{{15}}{8} \\
\]
Writing the value of \[x\] and \[y\] into the mixed fraction, \[{\text{Quotient}}\dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\] to match with the options, we get
\[ \Rightarrow x = 2\dfrac{1}{8}\]
\[ \Rightarrow y = 1\dfrac{7}{8}\]
Hence, option D is correct.
Note: We can avoid the final steps of mixed form by matching the denominators with the options and finding the correct one. We know that a linear system of two equations with two variables is any system that can be written in the form. A solution to a system of equations is a value of \[x\] and a value of \[y\] that, when substituted into the equations, satisfies both equations at the same time.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

