
The pair of equations \[{3^{x + y}} = 81\], \[{81^{x - y}} = 3\] has
A.No solution
B.The solution \[x = 2\dfrac{1}{2}\],\[y = 2\dfrac{1}{2}\]
C.The solution \[x = 2\], \[y = 2\]
D.The solution \[x = 2\dfrac{1}{8}\],\[y = 1\dfrac{7}{8}\]
Answer
575.1k+ views
Hint: First we will first rewrite the number 81 into powers of 3 in the equation and then use the power rule that if \[{a^x} = {a^y}\], then \[x = y\]. Then we will simplify the equations to find the value of \[x\] and \[y\].
Complete step-by-step answer:
We are given that the pair of linear equations
\[{3^{x + y}} = 81{\text{ ......eq.(1)}}\]
\[{81^{x - y}} = 3{\text{ ......eq(2)}}\]
Rewriting the number 81 into powers of 3 in the equation (1), we get
\[ \Rightarrow {3^{x + y}} = {3^4}\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow x + y = 4\]
Subtracting the above equation by \[x\] on both sides, we get
\[
\Rightarrow x + y - x = 4 - x \\
\Rightarrow y = 4 - x{\text{ .......eq.(3)}} \\
\]
Rewriting the number 81 into powers of 3 in the equation (2), we get
\[
\Rightarrow {3^{4\left( {x - y} \right)}} = 3 \\
\Rightarrow {3^{4x - 4y}} = {3^1} \\
\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow 4x - 4y = 1\]
Substituting the value of \[y\] from equation (3) in the above equation, we get
\[
\Rightarrow 4x - 4\left( {4 - x} \right) = 1 \\
\Rightarrow 4x - 16 + 4x = 1 \\
\Rightarrow 8x - 16 = 1 \\
\]
Adding the above equation by 16 on both sides, we get
\[
\Rightarrow 8x - 16 + 16 = 1 + 16 \\
\Rightarrow 8x = 17 \\
\]
Dividing the above equation by 8 on both sides, we get
\[
\Rightarrow \dfrac{{8x}}{8} = \dfrac{{17}}{8} \\
\Rightarrow x = \dfrac{{17}}{8} \\
\]
Substituting the value of \[x\] in the equation (3), we get
\[
\Rightarrow y = 4 - \dfrac{{17}}{8} \\
\Rightarrow y = \dfrac{{32 - 17}}{8} \\
\Rightarrow y = \dfrac{{15}}{8} \\
\]
Writing the value of \[x\] and \[y\] into the mixed fraction, \[{\text{Quotient}}\dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\] to match with the options, we get
\[ \Rightarrow x = 2\dfrac{1}{8}\]
\[ \Rightarrow y = 1\dfrac{7}{8}\]
Hence, option D is correct.
Note: We can avoid the final steps of mixed form by matching the denominators with the options and finding the correct one. We know that a linear system of two equations with two variables is any system that can be written in the form. A solution to a system of equations is a value of \[x\] and a value of \[y\] that, when substituted into the equations, satisfies both equations at the same time.
Complete step-by-step answer:
We are given that the pair of linear equations
\[{3^{x + y}} = 81{\text{ ......eq.(1)}}\]
\[{81^{x - y}} = 3{\text{ ......eq(2)}}\]
Rewriting the number 81 into powers of 3 in the equation (1), we get
\[ \Rightarrow {3^{x + y}} = {3^4}\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow x + y = 4\]
Subtracting the above equation by \[x\] on both sides, we get
\[
\Rightarrow x + y - x = 4 - x \\
\Rightarrow y = 4 - x{\text{ .......eq.(3)}} \\
\]
Rewriting the number 81 into powers of 3 in the equation (2), we get
\[
\Rightarrow {3^{4\left( {x - y} \right)}} = 3 \\
\Rightarrow {3^{4x - 4y}} = {3^1} \\
\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow 4x - 4y = 1\]
Substituting the value of \[y\] from equation (3) in the above equation, we get
\[
\Rightarrow 4x - 4\left( {4 - x} \right) = 1 \\
\Rightarrow 4x - 16 + 4x = 1 \\
\Rightarrow 8x - 16 = 1 \\
\]
Adding the above equation by 16 on both sides, we get
\[
\Rightarrow 8x - 16 + 16 = 1 + 16 \\
\Rightarrow 8x = 17 \\
\]
Dividing the above equation by 8 on both sides, we get
\[
\Rightarrow \dfrac{{8x}}{8} = \dfrac{{17}}{8} \\
\Rightarrow x = \dfrac{{17}}{8} \\
\]
Substituting the value of \[x\] in the equation (3), we get
\[
\Rightarrow y = 4 - \dfrac{{17}}{8} \\
\Rightarrow y = \dfrac{{32 - 17}}{8} \\
\Rightarrow y = \dfrac{{15}}{8} \\
\]
Writing the value of \[x\] and \[y\] into the mixed fraction, \[{\text{Quotient}}\dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\] to match with the options, we get
\[ \Rightarrow x = 2\dfrac{1}{8}\]
\[ \Rightarrow y = 1\dfrac{7}{8}\]
Hence, option D is correct.
Note: We can avoid the final steps of mixed form by matching the denominators with the options and finding the correct one. We know that a linear system of two equations with two variables is any system that can be written in the form. A solution to a system of equations is a value of \[x\] and a value of \[y\] that, when substituted into the equations, satisfies both equations at the same time.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

