
The pair of equations \[{3^{x + y}} = 81\], \[{81^{x - y}} = 3\] has
A.No solution
B.The solution \[x = 2\dfrac{1}{2}\],\[y = 2\dfrac{1}{2}\]
C.The solution \[x = 2\], \[y = 2\]
D.The solution \[x = 2\dfrac{1}{8}\],\[y = 1\dfrac{7}{8}\]
Answer
571.5k+ views
Hint: First we will first rewrite the number 81 into powers of 3 in the equation and then use the power rule that if \[{a^x} = {a^y}\], then \[x = y\]. Then we will simplify the equations to find the value of \[x\] and \[y\].
Complete step-by-step answer:
We are given that the pair of linear equations
\[{3^{x + y}} = 81{\text{ ......eq.(1)}}\]
\[{81^{x - y}} = 3{\text{ ......eq(2)}}\]
Rewriting the number 81 into powers of 3 in the equation (1), we get
\[ \Rightarrow {3^{x + y}} = {3^4}\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow x + y = 4\]
Subtracting the above equation by \[x\] on both sides, we get
\[
\Rightarrow x + y - x = 4 - x \\
\Rightarrow y = 4 - x{\text{ .......eq.(3)}} \\
\]
Rewriting the number 81 into powers of 3 in the equation (2), we get
\[
\Rightarrow {3^{4\left( {x - y} \right)}} = 3 \\
\Rightarrow {3^{4x - 4y}} = {3^1} \\
\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow 4x - 4y = 1\]
Substituting the value of \[y\] from equation (3) in the above equation, we get
\[
\Rightarrow 4x - 4\left( {4 - x} \right) = 1 \\
\Rightarrow 4x - 16 + 4x = 1 \\
\Rightarrow 8x - 16 = 1 \\
\]
Adding the above equation by 16 on both sides, we get
\[
\Rightarrow 8x - 16 + 16 = 1 + 16 \\
\Rightarrow 8x = 17 \\
\]
Dividing the above equation by 8 on both sides, we get
\[
\Rightarrow \dfrac{{8x}}{8} = \dfrac{{17}}{8} \\
\Rightarrow x = \dfrac{{17}}{8} \\
\]
Substituting the value of \[x\] in the equation (3), we get
\[
\Rightarrow y = 4 - \dfrac{{17}}{8} \\
\Rightarrow y = \dfrac{{32 - 17}}{8} \\
\Rightarrow y = \dfrac{{15}}{8} \\
\]
Writing the value of \[x\] and \[y\] into the mixed fraction, \[{\text{Quotient}}\dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\] to match with the options, we get
\[ \Rightarrow x = 2\dfrac{1}{8}\]
\[ \Rightarrow y = 1\dfrac{7}{8}\]
Hence, option D is correct.
Note: We can avoid the final steps of mixed form by matching the denominators with the options and finding the correct one. We know that a linear system of two equations with two variables is any system that can be written in the form. A solution to a system of equations is a value of \[x\] and a value of \[y\] that, when substituted into the equations, satisfies both equations at the same time.
Complete step-by-step answer:
We are given that the pair of linear equations
\[{3^{x + y}} = 81{\text{ ......eq.(1)}}\]
\[{81^{x - y}} = 3{\text{ ......eq(2)}}\]
Rewriting the number 81 into powers of 3 in the equation (1), we get
\[ \Rightarrow {3^{x + y}} = {3^4}\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow x + y = 4\]
Subtracting the above equation by \[x\] on both sides, we get
\[
\Rightarrow x + y - x = 4 - x \\
\Rightarrow y = 4 - x{\text{ .......eq.(3)}} \\
\]
Rewriting the number 81 into powers of 3 in the equation (2), we get
\[
\Rightarrow {3^{4\left( {x - y} \right)}} = 3 \\
\Rightarrow {3^{4x - 4y}} = {3^1} \\
\]
Using the power rule that if \[{a^x} = {a^y}\], then \[x = y\] in the above equation, we get
\[ \Rightarrow 4x - 4y = 1\]
Substituting the value of \[y\] from equation (3) in the above equation, we get
\[
\Rightarrow 4x - 4\left( {4 - x} \right) = 1 \\
\Rightarrow 4x - 16 + 4x = 1 \\
\Rightarrow 8x - 16 = 1 \\
\]
Adding the above equation by 16 on both sides, we get
\[
\Rightarrow 8x - 16 + 16 = 1 + 16 \\
\Rightarrow 8x = 17 \\
\]
Dividing the above equation by 8 on both sides, we get
\[
\Rightarrow \dfrac{{8x}}{8} = \dfrac{{17}}{8} \\
\Rightarrow x = \dfrac{{17}}{8} \\
\]
Substituting the value of \[x\] in the equation (3), we get
\[
\Rightarrow y = 4 - \dfrac{{17}}{8} \\
\Rightarrow y = \dfrac{{32 - 17}}{8} \\
\Rightarrow y = \dfrac{{15}}{8} \\
\]
Writing the value of \[x\] and \[y\] into the mixed fraction, \[{\text{Quotient}}\dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\] to match with the options, we get
\[ \Rightarrow x = 2\dfrac{1}{8}\]
\[ \Rightarrow y = 1\dfrac{7}{8}\]
Hence, option D is correct.
Note: We can avoid the final steps of mixed form by matching the denominators with the options and finding the correct one. We know that a linear system of two equations with two variables is any system that can be written in the form. A solution to a system of equations is a value of \[x\] and a value of \[y\] that, when substituted into the equations, satisfies both equations at the same time.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

