
The owner of a milk store finds that he can sell $980$ litres of milk each week at $Rs14$ per litre and $1220$ litres of milk each week at $Rs16$ per litre. Assuming a linear relationship between selling price and demand, how many litres could you sell weekly at $Rs17$ per litre?
Answer
622.2k+ views
Hint: Assume one of the entities to be along x axis and the other to be along y axis. We have 2 points on the graph where each point has one x value and one y value, using these points form an equation of line and then put the value of the asked entity in the equation to obtain the answer.
Note: In this question, we took selling price on x-axis and demand on y-axis and then took the values of both to plot the graph, in this graph we have 2 points using these points we formed equation of line and then finally equated x=17 in the equation to get the result.
Complete step by step answer:
Selling price be along the $x$–axis.
And demand for milk is along the $y$–axis.
Let, $y$ litre be sold at Rs.$x/litre$
Considering the given statement, the owner sells $980$ litres milk at Rs $14/litre$.
Let,
${x_1} = 14,{y_1} = 980$
And the next case is owner sells $1220$ litres of milk each week at $Rs16$ per litre,
Therefore,
${x_2} = 16,{y_2} = 1220$
Equation of line passing through $\left( {14,980} \right)$ and $\left( {16,1220} \right)$ .
So, on using the line formula, we have,
$\left( {y - 980} \right) = \dfrac{{1220 - 980}}{{16 - 14}}\left( {x - 14} \right)$
$\left( {y - 980} \right) = \dfrac{{240}}{2}\left( {x - 14} \right)$
$\left( {y - 980} \right) = 120\left( {x - 14} \right)$
$y = 120\left( {x - 14} \right) + 980$
Now, in the question they have asked us to find the milk that can be sold at the rate of $Rs17/litre$.
Therefore, on equating $x = 17$, we get,
$y = 120\left( {x - 14} \right) + 980$
$y = 120\left( {17 - 14} \right) + 980$
$y = 120 \times 3 + 980$
$y = 360 + 980$
$y = 1340$
Therefore, $1340$ litres of milk can be sold at the rate of $Rs17/litre$.
Selling price be along the $x$–axis.
And demand for milk is along the $y$–axis.
Let, $y$ litre be sold at Rs.$x/litre$
Considering the given statement, the owner sells $980$ litres milk at Rs $14/litre$.
Let,
${x_1} = 14,{y_1} = 980$
And the next case is owner sells $1220$ litres of milk each week at $Rs16$ per litre,
Therefore,
${x_2} = 16,{y_2} = 1220$
Equation of line passing through $\left( {14,980} \right)$ and $\left( {16,1220} \right)$ .
So, on using the line formula, we have,
$\left( {y - 980} \right) = \dfrac{{1220 - 980}}{{16 - 14}}\left( {x - 14} \right)$
$\left( {y - 980} \right) = \dfrac{{240}}{2}\left( {x - 14} \right)$
$\left( {y - 980} \right) = 120\left( {x - 14} \right)$
$y = 120\left( {x - 14} \right) + 980$
Now, in the question they have asked us to find the milk that can be sold at the rate of $Rs17/litre$.
Therefore, on equating $x = 17$, we get,
$y = 120\left( {x - 14} \right) + 980$
$y = 120\left( {17 - 14} \right) + 980$
$y = 120 \times 3 + 980$
$y = 360 + 980$
$y = 1340$
Therefore, $1340$ litres of milk can be sold at the rate of $Rs17/litre$.
Note: In this question, we took selling price on x-axis and demand on y-axis and then took the values of both to plot the graph, in this graph we have 2 points using these points we formed equation of line and then finally equated x=17 in the equation to get the result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

