
The original price of two articles are in the ratio \[3:4\]. If the price of the first article is increased by \[10%\] and that of the second by \[Rs.4\], the original ratio remains the same. The original price of the second article is ___?
Answer
601.5k+ views
Hint: Assume the price of the first article to be x and second article to be y. Write equations based on the data given in the question. Solve the pair of linear equations in two variables to find the value of variables x and y and thus get the price of the second article.
Complete step-by-step answer:
We have two articles whose prices are related by data given in the question. We have to find the price of the second article. We will solve this question by writing linear equations, relating the prices of both the articles.
Let us assume that the price of the first article is \[Rs.x\] and the price of the second article is \[Rs.y\].
We know that the prices of both the articles are in the ratio \[3:4\]. Thus, we have \[\dfrac{x}{y}=\dfrac{3}{4}\].
We can write this equation as \[x=\dfrac{3}{4}y.....\left( 1 \right)\].
We increased the price of the second article by \[10%\].
We know that \[a%\] of b has the value \[\dfrac{ab}{100}\].
Thus, the value of \[10%\] of \[Rs.x\]\[=\dfrac{10x}{100}=\dfrac{Rs.x}{10}\].
So, the new price of the first article \[=Rs.\left( x+\dfrac{x}{10} \right)=Rs.\dfrac{11x}{10}\].
We increased the price of the second article by \[Rs.4\]. Thus, the new price of the second article is \[Rs.(y+4)\].
We know that the ratio of new prices is still the same, i.e., \[3:4\].
Thus, we have \[\dfrac{\dfrac{11x}{10}}{y+4}=\dfrac{3}{4}.....\left( 2 \right)\].
Substituting equation (2) in equation (1), we have \[\dfrac{\dfrac{11\left( \dfrac{3}{4}y \right)}{10}}{y+4}=\dfrac{3}{4}\].
Simplifying the above equation, we have \[\dfrac{11\left( \dfrac{3}{4}y \right)}{10}=\dfrac{3}{4}\left( y+4 \right)\].
\[\begin{align}
& \Rightarrow \dfrac{11y}{10}=y+4 \\
& \Rightarrow \dfrac{11y}{10}-y=4 \\
& \Rightarrow \dfrac{y}{10}=4 \\
& \Rightarrow y=4\times 10=40 \\
\end{align}\]
Hence, the price of the second article is \[Rs.y=Rs.40\].
Note: We can also solve this question by forming linear equations in one variable. Let us assume that the price of the first article is \[Rs.x\]. Write the price of the second article in terms of the price of the first article. Form another equation based on the given data and solve them to get the value of both the articles.
Complete step-by-step answer:
We have two articles whose prices are related by data given in the question. We have to find the price of the second article. We will solve this question by writing linear equations, relating the prices of both the articles.
Let us assume that the price of the first article is \[Rs.x\] and the price of the second article is \[Rs.y\].
We know that the prices of both the articles are in the ratio \[3:4\]. Thus, we have \[\dfrac{x}{y}=\dfrac{3}{4}\].
We can write this equation as \[x=\dfrac{3}{4}y.....\left( 1 \right)\].
We increased the price of the second article by \[10%\].
We know that \[a%\] of b has the value \[\dfrac{ab}{100}\].
Thus, the value of \[10%\] of \[Rs.x\]\[=\dfrac{10x}{100}=\dfrac{Rs.x}{10}\].
So, the new price of the first article \[=Rs.\left( x+\dfrac{x}{10} \right)=Rs.\dfrac{11x}{10}\].
We increased the price of the second article by \[Rs.4\]. Thus, the new price of the second article is \[Rs.(y+4)\].
We know that the ratio of new prices is still the same, i.e., \[3:4\].
Thus, we have \[\dfrac{\dfrac{11x}{10}}{y+4}=\dfrac{3}{4}.....\left( 2 \right)\].
Substituting equation (2) in equation (1), we have \[\dfrac{\dfrac{11\left( \dfrac{3}{4}y \right)}{10}}{y+4}=\dfrac{3}{4}\].
Simplifying the above equation, we have \[\dfrac{11\left( \dfrac{3}{4}y \right)}{10}=\dfrac{3}{4}\left( y+4 \right)\].
\[\begin{align}
& \Rightarrow \dfrac{11y}{10}=y+4 \\
& \Rightarrow \dfrac{11y}{10}-y=4 \\
& \Rightarrow \dfrac{y}{10}=4 \\
& \Rightarrow y=4\times 10=40 \\
\end{align}\]
Hence, the price of the second article is \[Rs.y=Rs.40\].
Note: We can also solve this question by forming linear equations in one variable. Let us assume that the price of the first article is \[Rs.x\]. Write the price of the second article in terms of the price of the first article. Form another equation based on the given data and solve them to get the value of both the articles.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Which is the largest Gulf in the world A Gulf of Aqaba class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

