Answer
Verified
491.1k+ views
Hint: Assume the price of the first article to be x and second article to be y. Write equations based on the data given in the question. Solve the pair of linear equations in two variables to find the value of variables x and y and thus get the price of the second article.
Complete step-by-step answer:
We have two articles whose prices are related by data given in the question. We have to find the price of the second article. We will solve this question by writing linear equations, relating the prices of both the articles.
Let us assume that the price of the first article is \[Rs.x\] and the price of the second article is \[Rs.y\].
We know that the prices of both the articles are in the ratio \[3:4\]. Thus, we have \[\dfrac{x}{y}=\dfrac{3}{4}\].
We can write this equation as \[x=\dfrac{3}{4}y.....\left( 1 \right)\].
We increased the price of the second article by \[10%\].
We know that \[a%\] of b has the value \[\dfrac{ab}{100}\].
Thus, the value of \[10%\] of \[Rs.x\]\[=\dfrac{10x}{100}=\dfrac{Rs.x}{10}\].
So, the new price of the first article \[=Rs.\left( x+\dfrac{x}{10} \right)=Rs.\dfrac{11x}{10}\].
We increased the price of the second article by \[Rs.4\]. Thus, the new price of the second article is \[Rs.(y+4)\].
We know that the ratio of new prices is still the same, i.e., \[3:4\].
Thus, we have \[\dfrac{\dfrac{11x}{10}}{y+4}=\dfrac{3}{4}.....\left( 2 \right)\].
Substituting equation (2) in equation (1), we have \[\dfrac{\dfrac{11\left( \dfrac{3}{4}y \right)}{10}}{y+4}=\dfrac{3}{4}\].
Simplifying the above equation, we have \[\dfrac{11\left( \dfrac{3}{4}y \right)}{10}=\dfrac{3}{4}\left( y+4 \right)\].
\[\begin{align}
& \Rightarrow \dfrac{11y}{10}=y+4 \\
& \Rightarrow \dfrac{11y}{10}-y=4 \\
& \Rightarrow \dfrac{y}{10}=4 \\
& \Rightarrow y=4\times 10=40 \\
\end{align}\]
Hence, the price of the second article is \[Rs.y=Rs.40\].
Note: We can also solve this question by forming linear equations in one variable. Let us assume that the price of the first article is \[Rs.x\]. Write the price of the second article in terms of the price of the first article. Form another equation based on the given data and solve them to get the value of both the articles.
Complete step-by-step answer:
We have two articles whose prices are related by data given in the question. We have to find the price of the second article. We will solve this question by writing linear equations, relating the prices of both the articles.
Let us assume that the price of the first article is \[Rs.x\] and the price of the second article is \[Rs.y\].
We know that the prices of both the articles are in the ratio \[3:4\]. Thus, we have \[\dfrac{x}{y}=\dfrac{3}{4}\].
We can write this equation as \[x=\dfrac{3}{4}y.....\left( 1 \right)\].
We increased the price of the second article by \[10%\].
We know that \[a%\] of b has the value \[\dfrac{ab}{100}\].
Thus, the value of \[10%\] of \[Rs.x\]\[=\dfrac{10x}{100}=\dfrac{Rs.x}{10}\].
So, the new price of the first article \[=Rs.\left( x+\dfrac{x}{10} \right)=Rs.\dfrac{11x}{10}\].
We increased the price of the second article by \[Rs.4\]. Thus, the new price of the second article is \[Rs.(y+4)\].
We know that the ratio of new prices is still the same, i.e., \[3:4\].
Thus, we have \[\dfrac{\dfrac{11x}{10}}{y+4}=\dfrac{3}{4}.....\left( 2 \right)\].
Substituting equation (2) in equation (1), we have \[\dfrac{\dfrac{11\left( \dfrac{3}{4}y \right)}{10}}{y+4}=\dfrac{3}{4}\].
Simplifying the above equation, we have \[\dfrac{11\left( \dfrac{3}{4}y \right)}{10}=\dfrac{3}{4}\left( y+4 \right)\].
\[\begin{align}
& \Rightarrow \dfrac{11y}{10}=y+4 \\
& \Rightarrow \dfrac{11y}{10}-y=4 \\
& \Rightarrow \dfrac{y}{10}=4 \\
& \Rightarrow y=4\times 10=40 \\
\end{align}\]
Hence, the price of the second article is \[Rs.y=Rs.40\].
Note: We can also solve this question by forming linear equations in one variable. Let us assume that the price of the first article is \[Rs.x\]. Write the price of the second article in terms of the price of the first article. Form another equation based on the given data and solve them to get the value of both the articles.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE