
The odds in the favour of one student passing a test are 3:7. The odds against another student passing it are 3:5. What is the probability that both pass the test?
Answer
569.4k+ views
Hint: First use the given odd to find the probability of passing the first student and the probability of passing the second student. Then use them to find the probability that both the students pass the test.
Complete step-by-step answer:
It is given that the odds in the favor of one student passing a test are 3:7 and the odds against another student passing it are 3:5.
We have to find the probability that both the students pass the test.
As we know that the odds are defined as the probability of occurring the event divided by the probability of not occurring the event.
It is given that the odds in the favor of one student passing a test are 3:7, it means that the probability of passing the student is $\left( {\dfrac{3}{{3 + 7}} = \dfrac{3}{{10}}} \right)$ and the probability of not passing the student is$\left( {\dfrac{7}{{3 + 7}} = \dfrac{7}{{10}}} \right)$.
Hence, the probability of passing the first student is$\left( {\dfrac{3}{{10}}} \right)$.
It is also given that the odds against another student passing it are 3:5. It means that the probability of not passing another student is $\left( {\dfrac{3}{{3 + 5}} = \dfrac{3}{8}} \right)$ and the probability of passing the student is$\left( {\dfrac{5}{{3 + 5}} = \dfrac{5}{8}} \right)$.
Now, we have the probability of passing the first student is $\left( {\dfrac{3}{{10}}} \right)$ and the probability of passing the second student is$\left( {\dfrac{5}{8}} \right)$.
The probability of passing both the students is the product of the probability of passing the first student and the probability of passing the second student.
Thus, the probability of passing both the students is given as:
$ = {\text{Probabiity of passing }}{{\text{1}}^{st}}{\text{ student}} \times {\text{Probabiity of passing }}{{\text{2}}^{st}}{\text{ student}}$
$ = \dfrac{3}{{10}} \times \dfrac{5}{8}$
$ = \dfrac{3}{{16}}$
Hence, the probability of passing both students is$\dfrac{3}{{16}}$.
Note: It has to notice that the odds in the favor of one student passing a test are 3:7 and the odds is given in favor so the $\left( {\dfrac{3}{{10}} = 0.3} \right)$ is the probability of passing but in case of the odds against another student passing it are 3:5, then the probability of passing is$\left( {\dfrac{5}{8} = 0.625} \right)$.
Complete step-by-step answer:
It is given that the odds in the favor of one student passing a test are 3:7 and the odds against another student passing it are 3:5.
We have to find the probability that both the students pass the test.
As we know that the odds are defined as the probability of occurring the event divided by the probability of not occurring the event.
It is given that the odds in the favor of one student passing a test are 3:7, it means that the probability of passing the student is $\left( {\dfrac{3}{{3 + 7}} = \dfrac{3}{{10}}} \right)$ and the probability of not passing the student is$\left( {\dfrac{7}{{3 + 7}} = \dfrac{7}{{10}}} \right)$.
Hence, the probability of passing the first student is$\left( {\dfrac{3}{{10}}} \right)$.
It is also given that the odds against another student passing it are 3:5. It means that the probability of not passing another student is $\left( {\dfrac{3}{{3 + 5}} = \dfrac{3}{8}} \right)$ and the probability of passing the student is$\left( {\dfrac{5}{{3 + 5}} = \dfrac{5}{8}} \right)$.
Now, we have the probability of passing the first student is $\left( {\dfrac{3}{{10}}} \right)$ and the probability of passing the second student is$\left( {\dfrac{5}{8}} \right)$.
The probability of passing both the students is the product of the probability of passing the first student and the probability of passing the second student.
Thus, the probability of passing both the students is given as:
$ = {\text{Probabiity of passing }}{{\text{1}}^{st}}{\text{ student}} \times {\text{Probabiity of passing }}{{\text{2}}^{st}}{\text{ student}}$
$ = \dfrac{3}{{10}} \times \dfrac{5}{8}$
$ = \dfrac{3}{{16}}$
Hence, the probability of passing both students is$\dfrac{3}{{16}}$.
Note: It has to notice that the odds in the favor of one student passing a test are 3:7 and the odds is given in favor so the $\left( {\dfrac{3}{{10}} = 0.3} \right)$ is the probability of passing but in case of the odds against another student passing it are 3:5, then the probability of passing is$\left( {\dfrac{5}{8} = 0.625} \right)$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

