
The number of zeros of the following quadratic polynomial are:
$4{{s}^{2}}-4s+1$
Answer
573.6k+ views
Hint: The solutions of an equation are also sometimes called as its zeros or roots.
A polynomial / equation of degree n, has at most n roots.
The two solutions of the general quadratic equation $a{{x}^{2}}+bx+c=0$ , are given as:
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
(i)If ${{b}^{2}}-4ac>0$ , then there are two distinct real solutions.
(ii)If ${{b}^{2}}-4ac<0$ , then there are two distinct complex solutions.
(iii)If ${{b}^{2}}-4ac=0$ , then there are two real solutions, each being $x=\dfrac{-b}{2a}$ .
Complete step-by-step answer:
Comparing the given quadratic equation $4{{s}^{2}}-4s+1$ with the general quadratic equation $a{{x}^{2}}+bx+c=0$ , we can say that a = 4, b = -4 and c = 1.
Let us examine the value of ${{b}^{2}}-4ac$ to determine the number of and the nature of the zeros. Using the above values of a, b and c, we get:
${{b}^{2}}-4ac={{(-4)}^{2}}-4(4)(1)=16-16=0$ .
Since, ${{b}^{2}}-4ac=0$ , there are two real solutions, which are $s=\dfrac{-b}{2a}=\dfrac{-(-4)}{2(4)}=\dfrac{4}{8}=\dfrac{1}{2}$ .
Even though there are two zeros (solutions), they are both equal.
So, we can say that there is only one zero and its value is $\dfrac{1}{2}$ .
Note: We can also solve the given equation by factoring it using the identity ${{a}^{2}}-2ab+{{b}^{2}}={{(a-b)}^{2}}$ , which will give us only one solution, that is a = b.
The quantity ${{b}^{2}}-4ac$ is also called Discriminant and is denoted by D or Δ.
The degree of a polynomial/equation is the highest power of the variables occurring in it.
(xy) has a degree of two, because the variables x and y are multiplied together.
A polynomial / equation of degree n, has at most n roots.
The two solutions of the general quadratic equation $a{{x}^{2}}+bx+c=0$ , are given as:
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
(i)If ${{b}^{2}}-4ac>0$ , then there are two distinct real solutions.
(ii)If ${{b}^{2}}-4ac<0$ , then there are two distinct complex solutions.
(iii)If ${{b}^{2}}-4ac=0$ , then there are two real solutions, each being $x=\dfrac{-b}{2a}$ .
Complete step-by-step answer:
Comparing the given quadratic equation $4{{s}^{2}}-4s+1$ with the general quadratic equation $a{{x}^{2}}+bx+c=0$ , we can say that a = 4, b = -4 and c = 1.
Let us examine the value of ${{b}^{2}}-4ac$ to determine the number of and the nature of the zeros. Using the above values of a, b and c, we get:
${{b}^{2}}-4ac={{(-4)}^{2}}-4(4)(1)=16-16=0$ .
Since, ${{b}^{2}}-4ac=0$ , there are two real solutions, which are $s=\dfrac{-b}{2a}=\dfrac{-(-4)}{2(4)}=\dfrac{4}{8}=\dfrac{1}{2}$ .
Even though there are two zeros (solutions), they are both equal.
So, we can say that there is only one zero and its value is $\dfrac{1}{2}$ .
Note: We can also solve the given equation by factoring it using the identity ${{a}^{2}}-2ab+{{b}^{2}}={{(a-b)}^{2}}$ , which will give us only one solution, that is a = b.
The quantity ${{b}^{2}}-4ac$ is also called Discriminant and is denoted by D or Δ.
The degree of a polynomial/equation is the highest power of the variables occurring in it.
(xy) has a degree of two, because the variables x and y are multiplied together.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

