The number of solutions of the equation $\cos \left( {\pi \sqrt {x - 4} } \right) \cdot \cos \left( {\pi \sqrt x } \right) = 1$ is
$
{\text{A}}{\text{. 1}} \\
{\text{B}}{\text{. 2}} \\
{\text{C}}{\text{. More than two}} \\
{\text{D}}{\text{. None of these}} \\
$
Answer
363k+ views
Hint: In this question we have to find the number of solutions of the given equation. To solve this question the main point is that the value of $\cos x$ is less than or equal to 1. At $x=0$ the value of cos is always to be 1.
Complete step-by-step answer:
In this question we have been given the equation $\cos \left( {\pi \sqrt {x - 4} } \right) \cdot \cos \left( {\pi \sqrt x } \right) = 1$
The RHS is 1 and both terms in multiplication in LHS are in cosine.
Now both terms can only be less than or equal to 1. But if anything less than 1 is multiplied with something less than 1, then we can never get 1 in RHS.
So, $\cos \left( {\pi \sqrt {x - 4} } \right) = 1$ and $\cos \left( {\pi \sqrt x } \right) = 1$
$ \Rightarrow \sqrt {x - 4} = 0$ and $\sqrt x = 0$
$ \Rightarrow x = 4{\text{ and }}x = 0$
As x=4 is only given in the options
And hence, option A is correct.
Note: Whenever we face such types of problems the key point to remember is that we need to have a good grasp over trigonometric properties, some of which have been used above. We must remember that the maximum value of sine and cosine is 1. This helps in getting us the required condition and gets us on the right track to reach the answer.
Complete step-by-step answer:
In this question we have been given the equation $\cos \left( {\pi \sqrt {x - 4} } \right) \cdot \cos \left( {\pi \sqrt x } \right) = 1$
The RHS is 1 and both terms in multiplication in LHS are in cosine.
Now both terms can only be less than or equal to 1. But if anything less than 1 is multiplied with something less than 1, then we can never get 1 in RHS.
So, $\cos \left( {\pi \sqrt {x - 4} } \right) = 1$ and $\cos \left( {\pi \sqrt x } \right) = 1$
$ \Rightarrow \sqrt {x - 4} = 0$ and $\sqrt x = 0$
$ \Rightarrow x = 4{\text{ and }}x = 0$
As x=4 is only given in the options
And hence, option A is correct.
Note: Whenever we face such types of problems the key point to remember is that we need to have a good grasp over trigonometric properties, some of which have been used above. We must remember that the maximum value of sine and cosine is 1. This helps in getting us the required condition and gets us on the right track to reach the answer.
Last updated date: 30th Sep 2023
•
Total views: 363k
•
Views today: 9.63k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE
