Answer
Verified
419.7k+ views
Hint: We start solving the problem by simplifying the given system of linear equations by making the necessary calculations. We then solve two of the given three equations to get the relation between the $ \theta $ and other variables. We then make use of the result that if $ \sin \alpha =\cos \alpha $ , then $ \alpha =n\pi +\dfrac{\pi }{4} $ , $ n\in Z $ to get the general solution for \[\theta \]. We then substitute different values for n to get the number of values of $ \theta $ that lies in the given interval to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the number of all possible values of \[\theta \], where $ 0 < \theta < \pi $ , for the given system of equations
$ \left( y+z \right)\cos 3\theta =\left( xyz \right)\sin 3\theta $
$ x\sin 3\theta =\dfrac{2\cos 3\theta }{y}+\dfrac{2\sin 3\theta }{z} $
$ \left( xyz \right)\sin 3\theta =\left( y+2z \right)\cos 3\theta +y\sin 3\theta $ , to have a solution $ \left( x,y,z \right) $ with $ yz\ne 0 $ .
Let us simplify the equation $ x\sin 3\theta =\dfrac{2\cos 3\theta }{y}+\dfrac{2\sin 3\theta }{z} $ .
$ \Rightarrow x\sin 3\theta =\dfrac{2z\cos 3\theta +2y\sin 3\theta }{yz} $ .
$ \Rightarrow xyz\sin 3\theta =2z\cos 3\theta +2y\sin 3\theta $ .
Now, let us rewrite the given system of linear equations:
$ \Rightarrow y\cos 3\theta +z\cos 3\theta =\left( xyz \right)\sin 3\theta $ ---(1).
$ \Rightarrow xyz\sin 3\theta =2z\cos 3\theta +2y\sin 3\theta $ ---(2).
$ \Rightarrow \left( xyz \right)\sin 3\theta =y\cos 3\theta +2z\cos 3\theta +y\sin 3\theta $ ---(3).
Let us solve equations (2) and (3).
\[\Rightarrow 2z\cos 3\theta +2y\sin 3\theta =y\cos 3\theta +2z\cos 3\theta +y\sin 3\theta \].
\[\Rightarrow y\sin 3\theta -y\cos 3\theta =0\].
\[\Rightarrow y\left( \sin 3\theta -\cos 3\theta \right)=0\].
We have given that $ y\ne 0 $ , so we get \[\sin 3\theta -\cos 3\theta =0\].
$ \Rightarrow \sin 3\theta =\cos 3\theta $ .
We know that if $ \sin \alpha =\cos \alpha $ , then $ \alpha =n\pi +\dfrac{\pi }{4} $ , $ n\in Z $ .
$ \Rightarrow 3\theta =n\pi +\dfrac{\pi }{4} $ .
$ \Rightarrow \theta =\dfrac{n\pi }{3}+\dfrac{\pi }{12} $ , $ n\in Z $ .
Let us substitute $ n=0 $ , then we get $ \theta =\dfrac{\pi }{12} $ .
Now, let us substitute $ n=1 $ , then we get $ \theta =\dfrac{\pi }{3}+\dfrac{\pi }{12}=\dfrac{5\pi }{12} $.
Now, let us substitute $ n=2 $ , then we get $ \theta =\dfrac{2\pi }{3}+\dfrac{\pi }{12}=\dfrac{9\pi }{12}=\dfrac{3\pi }{4} $ .
Since the value of $ \theta $ lies in $ \left( 0,\pi \right) $ , other values of n will not satisfy.
So, we have found three possible values of $ \theta $ .
$ \therefore $ The correct option for the given problem is (d).
Note:
We can also solve the given system of linear equations by first writing the coefficient matrix and then equating its determinant to zero which gives us a similar result. We should not make calculation mistakes while solving this problem. We should not forget to find particular solutions after finding the general solution for $ \theta $, which is a common mistake done by students. Similarly, we can expect problems to find whether the given system of linear equations has unique or infinite solutions.
Complete step by step answer:
According to the problem, we are asked to find the number of all possible values of \[\theta \], where $ 0 < \theta < \pi $ , for the given system of equations
$ \left( y+z \right)\cos 3\theta =\left( xyz \right)\sin 3\theta $
$ x\sin 3\theta =\dfrac{2\cos 3\theta }{y}+\dfrac{2\sin 3\theta }{z} $
$ \left( xyz \right)\sin 3\theta =\left( y+2z \right)\cos 3\theta +y\sin 3\theta $ , to have a solution $ \left( x,y,z \right) $ with $ yz\ne 0 $ .
Let us simplify the equation $ x\sin 3\theta =\dfrac{2\cos 3\theta }{y}+\dfrac{2\sin 3\theta }{z} $ .
$ \Rightarrow x\sin 3\theta =\dfrac{2z\cos 3\theta +2y\sin 3\theta }{yz} $ .
$ \Rightarrow xyz\sin 3\theta =2z\cos 3\theta +2y\sin 3\theta $ .
Now, let us rewrite the given system of linear equations:
$ \Rightarrow y\cos 3\theta +z\cos 3\theta =\left( xyz \right)\sin 3\theta $ ---(1).
$ \Rightarrow xyz\sin 3\theta =2z\cos 3\theta +2y\sin 3\theta $ ---(2).
$ \Rightarrow \left( xyz \right)\sin 3\theta =y\cos 3\theta +2z\cos 3\theta +y\sin 3\theta $ ---(3).
Let us solve equations (2) and (3).
\[\Rightarrow 2z\cos 3\theta +2y\sin 3\theta =y\cos 3\theta +2z\cos 3\theta +y\sin 3\theta \].
\[\Rightarrow y\sin 3\theta -y\cos 3\theta =0\].
\[\Rightarrow y\left( \sin 3\theta -\cos 3\theta \right)=0\].
We have given that $ y\ne 0 $ , so we get \[\sin 3\theta -\cos 3\theta =0\].
$ \Rightarrow \sin 3\theta =\cos 3\theta $ .
We know that if $ \sin \alpha =\cos \alpha $ , then $ \alpha =n\pi +\dfrac{\pi }{4} $ , $ n\in Z $ .
$ \Rightarrow 3\theta =n\pi +\dfrac{\pi }{4} $ .
$ \Rightarrow \theta =\dfrac{n\pi }{3}+\dfrac{\pi }{12} $ , $ n\in Z $ .
Let us substitute $ n=0 $ , then we get $ \theta =\dfrac{\pi }{12} $ .
Now, let us substitute $ n=1 $ , then we get $ \theta =\dfrac{\pi }{3}+\dfrac{\pi }{12}=\dfrac{5\pi }{12} $.
Now, let us substitute $ n=2 $ , then we get $ \theta =\dfrac{2\pi }{3}+\dfrac{\pi }{12}=\dfrac{9\pi }{12}=\dfrac{3\pi }{4} $ .
Since the value of $ \theta $ lies in $ \left( 0,\pi \right) $ , other values of n will not satisfy.
So, we have found three possible values of $ \theta $ .
$ \therefore $ The correct option for the given problem is (d).
Note:
We can also solve the given system of linear equations by first writing the coefficient matrix and then equating its determinant to zero which gives us a similar result. We should not make calculation mistakes while solving this problem. We should not forget to find particular solutions after finding the general solution for $ \theta $, which is a common mistake done by students. Similarly, we can expect problems to find whether the given system of linear equations has unique or infinite solutions.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE