Answer
Verified
445.5k+ views
Hint: By substituting the value of n, different terms can be found of an Arithmetic progression.
The sum of n terms of an AP is, ${S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]$
Where, $a = $ first term of an AP,${a_n} = $ last term of an AP and $n = $ number of terms whose sum is to be determined.
Complete step-by-step answer:
Given information:
The n-th term of an arithmetic progression is given as,
${T_n} = 5n - 3 \cdots \left( 1 \right)$
Substituting different values of n, the terms of an arithmetic progression can be generated.
Put $n = 1$ in equation (1), we get the first term as,
$
\Rightarrow {T_1} = 5\left( 1 \right) - 3 \\
\Rightarrow {T_1} = 2 \\
$
Put $n = 2$ in equation (1), we get the second term as,
$
\Rightarrow {T_2} = 5\left( 2 \right) - 3 \\
\Rightarrow {T_2} = 7 \\
$
Put $n = 3$ in equation (1), we get the third term as,
$
\Rightarrow {T_3} = 5\left( 3 \right) - 3 \\
\Rightarrow {T_3} = 12 \\
$
Put $n = 4$ in equation (1), we get the fourth term as,
$
\Rightarrow {T_4} = 5\left( 4 \right) - 3 \\
\Rightarrow {T_4} = 17 \\
$
The common difference of an arithmetic progression is calculated by subtracting previous term from the next term,
$\Rightarrow d = {T_2} - {T_1} \cdots \left( 2 \right)$
Substitute the value of ${T_2}$ and ${T_1}$ in equation (2), we get
$
\Rightarrow d = 7 - 2 \\
\Rightarrow d = 5 \\
$
To obtain the last term or 20-th term, Put $n = 20$ in equation (1).
$
\Rightarrow {T_{20}} = 5\left( {20} \right) - 3 \\
\Rightarrow {T_{20}} = 97 \\
$
The sum n terms of an arithmetic progression is given by,
$\Rightarrow {S_n} = \dfrac{n}{2}\left[ {{T_1} + {T_n}} \right] \cdots \left( 3 \right)$
Substitute the value of$n = 20$, ${T_1} = 2$ and ${T_n} = 97$ in equation (3), we get
$
\Rightarrow {S_n} = \dfrac{{20}}{2}\left[ {2 + 97} \right] \\
\Rightarrow {S_n} = 10\left[ {99} \right] \\
\Rightarrow {S_n} = 990 \\
$
Hence, the sum of 20 terms of an arithmetic progression whose n-th term is ${T_n} = 5n - 3$ is $990$ .
Note: The sequence is called as an arithmetic progression when the successive terms differ by a common difference .
The above Sum can also be calculated from another formula which is in terms of common difference as,
$\Rightarrow {S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] \cdots \left( i \right)$
Substitute the value of$n$, ${T_1}$ or $a$ , $d$ in equation (i), we get
$
\Rightarrow {S_n} = \dfrac{{20}}{2}\left[ {2\left( 2 \right) + \left( {20 - 1} \right)5} \right] \\
\Rightarrow {S_n} = 10\left[ {4 + 95} \right] \\
\Rightarrow {S_n} = 990 \\
$
The sum of n terms of an AP is, ${S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]$
Where, $a = $ first term of an AP,${a_n} = $ last term of an AP and $n = $ number of terms whose sum is to be determined.
Complete step-by-step answer:
Given information:
The n-th term of an arithmetic progression is given as,
${T_n} = 5n - 3 \cdots \left( 1 \right)$
Substituting different values of n, the terms of an arithmetic progression can be generated.
Put $n = 1$ in equation (1), we get the first term as,
$
\Rightarrow {T_1} = 5\left( 1 \right) - 3 \\
\Rightarrow {T_1} = 2 \\
$
Put $n = 2$ in equation (1), we get the second term as,
$
\Rightarrow {T_2} = 5\left( 2 \right) - 3 \\
\Rightarrow {T_2} = 7 \\
$
Put $n = 3$ in equation (1), we get the third term as,
$
\Rightarrow {T_3} = 5\left( 3 \right) - 3 \\
\Rightarrow {T_3} = 12 \\
$
Put $n = 4$ in equation (1), we get the fourth term as,
$
\Rightarrow {T_4} = 5\left( 4 \right) - 3 \\
\Rightarrow {T_4} = 17 \\
$
The common difference of an arithmetic progression is calculated by subtracting previous term from the next term,
$\Rightarrow d = {T_2} - {T_1} \cdots \left( 2 \right)$
Substitute the value of ${T_2}$ and ${T_1}$ in equation (2), we get
$
\Rightarrow d = 7 - 2 \\
\Rightarrow d = 5 \\
$
To obtain the last term or 20-th term, Put $n = 20$ in equation (1).
$
\Rightarrow {T_{20}} = 5\left( {20} \right) - 3 \\
\Rightarrow {T_{20}} = 97 \\
$
The sum n terms of an arithmetic progression is given by,
$\Rightarrow {S_n} = \dfrac{n}{2}\left[ {{T_1} + {T_n}} \right] \cdots \left( 3 \right)$
Substitute the value of$n = 20$, ${T_1} = 2$ and ${T_n} = 97$ in equation (3), we get
$
\Rightarrow {S_n} = \dfrac{{20}}{2}\left[ {2 + 97} \right] \\
\Rightarrow {S_n} = 10\left[ {99} \right] \\
\Rightarrow {S_n} = 990 \\
$
Hence, the sum of 20 terms of an arithmetic progression whose n-th term is ${T_n} = 5n - 3$ is $990$ .
Note: The sequence is called as an arithmetic progression when the successive terms differ by a common difference .
The above Sum can also be calculated from another formula which is in terms of common difference as,
$\Rightarrow {S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] \cdots \left( i \right)$
Substitute the value of$n$, ${T_1}$ or $a$ , $d$ in equation (i), we get
$
\Rightarrow {S_n} = \dfrac{{20}}{2}\left[ {2\left( 2 \right) + \left( {20 - 1} \right)5} \right] \\
\Rightarrow {S_n} = 10\left[ {4 + 95} \right] \\
\Rightarrow {S_n} = 990 \\
$
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Draw a labelled sketch of the human eye class 12 physics CBSE