Answer
Verified
414.9k+ views
Hint: Apply the formula for mean deviation given as: - Mean deviation = \[\dfrac{1}{n}\sum\limits_{i=1}^{n}{\left| \overline{x}-{{x}_{i}} \right|}\], where ‘n’ is the number of observations, \[\overline{x}\] is the mean of the given data and \[{{x}_{i}}\] are the given observations where i = 1, 2, ……, n. To find the value of mean use the formula \[\overline{x}=\dfrac{\sum{{{x}_{i}}}}{n}\]. Substitute all the values in the above formula with n = 7 to get the required mean deviation.
Complete step-by-step answer:
Here, we have been provided with the data 3, 10, 10, 4, 7, 10, 5 and we are asked to determine the mean deviation of these data from its mean.
Now, we know that the formula used to calculate the mean deviation is given as: - Mean deviation = \[\dfrac{1}{n}\sum\limits_{i=1}^{n}{\left| \overline{x}-{{x}_{i}} \right|}\], where \[\overline{x}\] is the mean of the given data, ‘n’ is the number of observations and \[{{x}_{i}}\] are the given data where i = 1, 2, .….,n. So, to find the mean deviation we need to find the mean of the given data first. The mean is given by the formula: - \[\overline{x}=\dfrac{\sum{{{x}_{i}}}}{n}\]. On counting the number of data given to us, we conclude that n = 7. So, we get,
\[\begin{align}
& \Rightarrow \overline{x}=\dfrac{3+10+10+4+7+10+5}{7} \\
& \Rightarrow \overline{x}=\dfrac{49}{7} \\
& \Rightarrow \overline{x}=7 \\
\end{align}\]
Therefore, the mean of the given data is 7. Now, substituting the value of mean in the formula for mean deviation, we get,
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\sum\limits_{i=1}^{7}{\left| 7-{{x}_{i}} \right|}\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ \left| 7-3 \right|+\left| 7-10 \right|+\left| 7-10 \right|+\left| 7-4 \right|+\left| 7-7 \right|+\left| 7-10 \right|+\left| 7-5 \right| \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ \left| 4 \right|+\left| -3 \right|+\left| -3 \right|+\left| 3 \right|+\left| 0 \right|+\left| -3 \right|+\left| 2 \right| \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ 4+3+3+3+0+3+2 \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ 18 \right]\]
\[\Rightarrow \] Mean deviation = 2.57
So, the correct answer is “Option b”.
Note: One must remember the formulas of mean and mean deviation to solve the above question. Do not forget to consider the modulus sign otherwise you will get the value of mean deviation equal to 0 and it will be considered as incorrect. Remember that the modulus of any number, whether negative or positive, is always positive. Count the number of observations carefully.
Complete step-by-step answer:
Here, we have been provided with the data 3, 10, 10, 4, 7, 10, 5 and we are asked to determine the mean deviation of these data from its mean.
Now, we know that the formula used to calculate the mean deviation is given as: - Mean deviation = \[\dfrac{1}{n}\sum\limits_{i=1}^{n}{\left| \overline{x}-{{x}_{i}} \right|}\], where \[\overline{x}\] is the mean of the given data, ‘n’ is the number of observations and \[{{x}_{i}}\] are the given data where i = 1, 2, .….,n. So, to find the mean deviation we need to find the mean of the given data first. The mean is given by the formula: - \[\overline{x}=\dfrac{\sum{{{x}_{i}}}}{n}\]. On counting the number of data given to us, we conclude that n = 7. So, we get,
\[\begin{align}
& \Rightarrow \overline{x}=\dfrac{3+10+10+4+7+10+5}{7} \\
& \Rightarrow \overline{x}=\dfrac{49}{7} \\
& \Rightarrow \overline{x}=7 \\
\end{align}\]
Therefore, the mean of the given data is 7. Now, substituting the value of mean in the formula for mean deviation, we get,
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\sum\limits_{i=1}^{7}{\left| 7-{{x}_{i}} \right|}\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ \left| 7-3 \right|+\left| 7-10 \right|+\left| 7-10 \right|+\left| 7-4 \right|+\left| 7-7 \right|+\left| 7-10 \right|+\left| 7-5 \right| \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ \left| 4 \right|+\left| -3 \right|+\left| -3 \right|+\left| 3 \right|+\left| 0 \right|+\left| -3 \right|+\left| 2 \right| \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ 4+3+3+3+0+3+2 \right]\]
\[\Rightarrow \] Mean deviation = \[\dfrac{1}{7}\left[ 18 \right]\]
\[\Rightarrow \] Mean deviation = 2.57
So, the correct answer is “Option b”.
Note: One must remember the formulas of mean and mean deviation to solve the above question. Do not forget to consider the modulus sign otherwise you will get the value of mean deviation equal to 0 and it will be considered as incorrect. Remember that the modulus of any number, whether negative or positive, is always positive. Count the number of observations carefully.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell