Answer
Verified
391.2k+ views
Hint: The mean deviation or mean absolute deviation is defined as a statistical measure which is used to calculate the average deviation from the mean value of the given data set. We have to assume a dataset and find the mean deviation about mean and that about median using the formulas $M.A.D\left( \overline{x} \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-\overline{x} \right|}}{N}\text{ }$ and $M.A.D\left( M \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-M \right|}}{N}$ respectively. Then, we have to compare the values obtained.
Complete step-by-step solution:
Let us recollect what mean deviation is. The mean deviation or mean absolute deviation is defined as a statistical measure which is used to calculate the average deviation from the mean value of the given data set. Mean absolute deviation is given by the formulas
$\begin{align}
& M.A.D\left( \overline{x} \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-\overline{x} \right|}}{N}...\left( i \right) \\
& M.A.D\left( M \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-M \right|}}{N}...\left( ii \right) \\
\end{align}$
We will use formula (i) when the central tendency is mean and formula (ii) when the central tendency is median.
Let us consider a dataset 3, 4, 5, 10, 8. We have to find the mean deviation and mean deviation from the median.
We know that mean deviation is given by
$M.A.D\left( \overline{x} \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-\overline{x} \right|}}{N}$
Let us find the mean of the dataset.
$\begin{align}
& \Rightarrow \overline{x}=\dfrac{3+4+5+10+8}{5} \\
& \Rightarrow \overline{x}=\dfrac{30}{5} \\
& \Rightarrow \overline{x}=6 \\
\end{align}$
Now, we have to find M.A.D.
\[\begin{align}
& \Rightarrow M.A.D\left( \overline{x} \right)=\dfrac{\left| 3-6 \right|+\left| 4-6 \right|+\left| 5-6 \right|+\left| 10-6 \right|+\left| 8-6 \right|}{5} \\
& \Rightarrow M.A.D\left( \overline{x} \right)=\dfrac{3+2+1+4+2}{5} \\
& \Rightarrow M.A.D\left( \overline{x} \right)=\dfrac{12}{5} \\
& \Rightarrow M.A.D\left( \overline{x} \right)=2.4 \\
\end{align}\]
Now, let us find mean deviation from the median. We have to arrange the dataset in the ascending order. The data can be written as 3, 4, 5, 8, 10.
Now, we have to find the median. We know that the number of data in the dataset is 5, which is an odd number. Therefore, the median will be the central value. Here, the median is $M=5$ .
Let us find the mean deviation from the median. We know that mean deviation from the median is given by
$M.A.D\left( M \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-M \right|}}{N}$
Let us substitute the values.
\[\begin{align}
& \Rightarrow M.A.D\left( M \right)=\dfrac{\left| 3-5 \right|+\left| 4-5 \right|+\left| 5-5 \right|+\left| 8-5 \right|+\left| 10-5 \right|}{5} \\
& \Rightarrow M.A.D\left( M \right)=\dfrac{2+1+0+3+5}{5} \\
& \Rightarrow M.A.D\left( M \right)=\dfrac{11}{5} \\
& \Rightarrow M.A.D\left( M \right)=2.2 \\
\end{align}\]
We can see that the value of mean deviation from the median is less than that from the mean. Therefore mean deviation from the median is less than that measured from any other value.
Hence, the correct option is b.
Note: Students must be thorough with the formulas of mean, median, mode and mean absolute deviation. We usually call mean deviation as mean absolute deviation because we are taking the absolute value of the difference of the value and mean(or median).
Complete step-by-step solution:
Let us recollect what mean deviation is. The mean deviation or mean absolute deviation is defined as a statistical measure which is used to calculate the average deviation from the mean value of the given data set. Mean absolute deviation is given by the formulas
$\begin{align}
& M.A.D\left( \overline{x} \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-\overline{x} \right|}}{N}...\left( i \right) \\
& M.A.D\left( M \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-M \right|}}{N}...\left( ii \right) \\
\end{align}$
We will use formula (i) when the central tendency is mean and formula (ii) when the central tendency is median.
Let us consider a dataset 3, 4, 5, 10, 8. We have to find the mean deviation and mean deviation from the median.
We know that mean deviation is given by
$M.A.D\left( \overline{x} \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-\overline{x} \right|}}{N}$
Let us find the mean of the dataset.
$\begin{align}
& \Rightarrow \overline{x}=\dfrac{3+4+5+10+8}{5} \\
& \Rightarrow \overline{x}=\dfrac{30}{5} \\
& \Rightarrow \overline{x}=6 \\
\end{align}$
Now, we have to find M.A.D.
\[\begin{align}
& \Rightarrow M.A.D\left( \overline{x} \right)=\dfrac{\left| 3-6 \right|+\left| 4-6 \right|+\left| 5-6 \right|+\left| 10-6 \right|+\left| 8-6 \right|}{5} \\
& \Rightarrow M.A.D\left( \overline{x} \right)=\dfrac{3+2+1+4+2}{5} \\
& \Rightarrow M.A.D\left( \overline{x} \right)=\dfrac{12}{5} \\
& \Rightarrow M.A.D\left( \overline{x} \right)=2.4 \\
\end{align}\]
Now, let us find mean deviation from the median. We have to arrange the dataset in the ascending order. The data can be written as 3, 4, 5, 8, 10.
Now, we have to find the median. We know that the number of data in the dataset is 5, which is an odd number. Therefore, the median will be the central value. Here, the median is $M=5$ .
Let us find the mean deviation from the median. We know that mean deviation from the median is given by
$M.A.D\left( M \right)=\dfrac{\sum\limits_{i=1}^{n}{{{f}_{i}}\left| {{x}_{i}}-M \right|}}{N}$
Let us substitute the values.
\[\begin{align}
& \Rightarrow M.A.D\left( M \right)=\dfrac{\left| 3-5 \right|+\left| 4-5 \right|+\left| 5-5 \right|+\left| 8-5 \right|+\left| 10-5 \right|}{5} \\
& \Rightarrow M.A.D\left( M \right)=\dfrac{2+1+0+3+5}{5} \\
& \Rightarrow M.A.D\left( M \right)=\dfrac{11}{5} \\
& \Rightarrow M.A.D\left( M \right)=2.2 \\
\end{align}\]
We can see that the value of mean deviation from the median is less than that from the mean. Therefore mean deviation from the median is less than that measured from any other value.
Hence, the correct option is b.
Note: Students must be thorough with the formulas of mean, median, mode and mean absolute deviation. We usually call mean deviation as mean absolute deviation because we are taking the absolute value of the difference of the value and mean(or median).
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life