
The mean and the standard deviation (s.d) of $10$ observations are $20$ and $2$ respectively. Each of these $10$ observations is multiplied by $p$ and then reduced by $q$, where $p \ne 0$ and $q \ne 0$. If the new mean and new s.d. become half of their original values, then q is equal to:
A. $ - 10$
B. $ - 5$
C. $ - 20$
D. $10$
Answer
550.8k+ views
Hint: In order to provide a solution for this problem, we need to assume the initial mean as ($\bar x$) and standard deviation as (${\sigma _1}$). When we are multiplying each observation by p and then reducing it by q, this causes a change in the original mean, and thus, the new mean $ = p.\bar x - q$. Whereas, it should be noted that subtraction of q from each observation will not affect the new standard deviation, and thus, the new standard deviation $ = \left| p \right|.\sigma {}_1$.
Complete step-by-step answer:
According to given information, we have
Initial mean ($\bar x$) and standard deviation (${\sigma _1}$) of $10$ observations are $20$ and $2$ respectively.
Let’s assume the new mean as ${\bar x_1}$and new standard deviation as ${\sigma _2}$.
And we know, ${\bar x_1} = 10$and ${\sigma _2} = 1$.
Now, we are multiplying each observation by p and then reducing it by q.
Henceforth, this causes a change in the original mean, and thus,
New mean $ = {\bar x_1} = p.\bar x - q$
$ \Rightarrow {\bar x_1} = \dfrac{1}{2}\bar x = \dfrac{1}{2} \times 20 = 10$
$ \Rightarrow 20p - q = 10$ $...(1)$
Further, we will calculate the new standard deviation,
New standard deviation is given by,
${\sigma _2}$$ = \left| p \right|.\sigma {}_1$ $...(2)$
It should be noted that subtraction of q from each observation will not affect the new standard deviation.
${\sigma _2}$$ = \dfrac{1}{2} \times 2 = 1$
On substituting the obtained value in equation $...(2)$, we get
$1$$ = \left| p \right|.2$
$ \Rightarrow \left| p \right| = \dfrac{1}{2}$
Therefore, we can conclude that the value of $p$is either $ + \dfrac{1}{2}$or $ - \dfrac{1}{2}$.
Firstly, considering $p = + \dfrac{1}{2}$ and substituting in the equation $...(1)$, we get
$ \Rightarrow 20 \times \dfrac{1}{2} - 10 = q$
$ \Rightarrow q = 0$
As we know according to the given data, $q \ne 0$.
Therefore, $p \ne + \dfrac{1}{2}$.
So, we are left with $p = - \dfrac{1}{2}$. On substituting in the equation $...(1)$, we get
$ \Rightarrow q = 20 \times ( - \dfrac{1}{2}) - 10$
$ \Rightarrow q = - 20$
Hence, Option C is the correct option.
Note: To solve this problem it is very much important to have a basic understanding of how an implication of arithmetic operations causes change in the original mean and standard deviation. Multiplication of each observation by p and then reducing it by q causes a change in the original mean. It should be noted that subtraction of q from each observation will not affect the new standard deviation.
Complete step-by-step answer:
According to given information, we have
Initial mean ($\bar x$) and standard deviation (${\sigma _1}$) of $10$ observations are $20$ and $2$ respectively.
Let’s assume the new mean as ${\bar x_1}$and new standard deviation as ${\sigma _2}$.
And we know, ${\bar x_1} = 10$and ${\sigma _2} = 1$.
Now, we are multiplying each observation by p and then reducing it by q.
Henceforth, this causes a change in the original mean, and thus,
New mean $ = {\bar x_1} = p.\bar x - q$
$ \Rightarrow {\bar x_1} = \dfrac{1}{2}\bar x = \dfrac{1}{2} \times 20 = 10$
$ \Rightarrow 20p - q = 10$ $...(1)$
Further, we will calculate the new standard deviation,
New standard deviation is given by,
${\sigma _2}$$ = \left| p \right|.\sigma {}_1$ $...(2)$
It should be noted that subtraction of q from each observation will not affect the new standard deviation.
${\sigma _2}$$ = \dfrac{1}{2} \times 2 = 1$
On substituting the obtained value in equation $...(2)$, we get
$1$$ = \left| p \right|.2$
$ \Rightarrow \left| p \right| = \dfrac{1}{2}$
Therefore, we can conclude that the value of $p$is either $ + \dfrac{1}{2}$or $ - \dfrac{1}{2}$.
Firstly, considering $p = + \dfrac{1}{2}$ and substituting in the equation $...(1)$, we get
$ \Rightarrow 20 \times \dfrac{1}{2} - 10 = q$
$ \Rightarrow q = 0$
As we know according to the given data, $q \ne 0$.
Therefore, $p \ne + \dfrac{1}{2}$.
So, we are left with $p = - \dfrac{1}{2}$. On substituting in the equation $...(1)$, we get
$ \Rightarrow q = 20 \times ( - \dfrac{1}{2}) - 10$
$ \Rightarrow q = - 20$
Hence, Option C is the correct option.
Note: To solve this problem it is very much important to have a basic understanding of how an implication of arithmetic operations causes change in the original mean and standard deviation. Multiplication of each observation by p and then reducing it by q causes a change in the original mean. It should be noted that subtraction of q from each observation will not affect the new standard deviation.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

