The maximum value of the expression $ \dfrac{1}{{{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta } $ isA. 0B. 1C. 2D. 3E. 4
Answer
Verified
448.2k+ views
Hint: We need to find the minimum value of $ {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $ to find the maximum value of the expression $ \dfrac{1}{{{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta } $ . First, simplify the expression using trigonometric formulas. Then we try to convert the equation into an equation of singular ratio using the formula of $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $ . Then we apply the condition of minimum value to get the answer.
Complete step by step answer:
Note:
Complete step by step answer:
First, we try to find the simplified form of the equation $ {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $ .
We have the identity theorem of $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ .
We convert the equation as
$ \Rightarrow {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $
$=\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)+\dfrac{3}{2}\left( 2\sin \theta \cos \theta \right)+4{{\cos }^{2}}\theta $
$ =1+\dfrac{3}{2}\left( 2\sin \theta \cos \theta \right)+2\left( 2{{\cos }^{2}}\theta \right) $
Now we apply the theorems of $ \sin 2\theta =2\sin \theta \cos \theta $ and $ 1+\cos 2\theta =2{{\cos }^{2}}\theta $.
$ \Rightarrow 1+\dfrac{3}{2}\left( 2\sin \theta \cos \theta \right)+2\left( 2{{\cos }^{2}}\theta \right) $
$ =1+\dfrac{3}{2}\left( \sin 2\theta \right)+2\left( 1+\cos 2\theta \right) $
$ =3+\dfrac{3\sin 2\theta }{2}+2\cos 2\theta $
To find the maximum value of the expression $ \dfrac{1}{{{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta } $ , we need to find the minimum value of $ {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $ which is equal to $ 3+\dfrac{3\sin 2\theta }{2}+2\cos 2\theta $ .
Now we try to convert the equation into one particular ratio.
We will take $\dfrac{5}{2} $ common from sin and cos terms and get
$ 3+\dfrac{3\sin 2\theta }{2}+2\cos 2\theta =3+\dfrac{5}{2}\left( \dfrac{3}{5}\sin 2\theta +\dfrac{4}{5}\cos 2\theta \right) $ .
We assume $ \cos \alpha =\dfrac{3}{5} $ which gives $ \sin \alpha =\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}=\sqrt{1-\dfrac{9}{25}}=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5} $ .
The equation becomes $ 3+\dfrac{5}{2}\left( \dfrac{3}{5}\sin 2\theta +\dfrac{4}{5}\cos 2\theta \right)=3+\dfrac{5}{2}\left( \sin 2\theta \cos \alpha +\cos 2\theta \sin \alpha \right) $ .
Now we apply $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $ . We assume $ A=2\theta ;B=\alpha $ .
\[3+\dfrac{5}{2}\left( \sin 2\theta \cos \alpha +\cos 2\theta \sin \alpha \right)=3+\dfrac{5}{2}\sin \left( 2\theta +\alpha \right)\].
Now we know that for any value of $ x\in \mathbb{R} $, the minimum value of $ \sin x $ is -1.
This means the minimum value of \[\sin \left( 2\theta +\alpha \right)\] is \[-1\]. We will find the minimum value of \[3+\dfrac{5}{2}\sin \left( 2\theta +\alpha \right)\] by putting minimum value of \[\sin \left( 2\theta +\alpha \right)\] as \[-1\].
So,\[3+\dfrac{5}{2}\sin \left( 2\theta +\alpha \right)=\]\[3+\dfrac{5}{2}\times(-1)\]
\[=\dfrac{1}{2}\]
Therefore, the minimum value of $ 3+\dfrac{3\sin 2\theta }{2}+2\cos 2\theta $ which is equal to $ {{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta $ , is $ \dfrac{1}{2} $ .
The maximum value of the expression $ \dfrac{1}{{{\sin }^{2}}\theta +3\sin \theta \cos \theta +5{{\cos }^{2}}\theta } $ is $ \dfrac{1}{\dfrac{1}{2}}=2 $ .
The correct option is (C).Note:
The general formula of finding minimum and maximum value of equation types like $ a\sin \alpha +b\cos \alpha $ is $ -\sqrt{{{a}^{2}}+{{b}^{2}}}\le \left( a\sin \alpha +b\cos \alpha \right)\le \sqrt{{{a}^{2}}+{{b}^{2}}} $ . For any values of $ x\in \mathbb{R} $ , minimum and maximum values of ratios like $ \sin x,\cos x $ is $ -1\le \sin x,\cos x\le 1 $ .
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE