
The manufacturer who produces medicines bottles finds that 0.1% of the bottles are defective. The bottles are packed in boxes containing 500 bottles. A drug manufacturer buys 100 boxes from the producer of bottles. Using Poisson distribution, the number of boxes with no defective bottle is ;
A.$ 100 \times {e^{ - 0.1}} $
B.$ 100 \times {e^{ - 0.5}} $
C.$ 100 \times {e^{ - 0.05}} $
D.$ 100 \times {e^{ - 0.01}} $
Answer
585.3k+ views
Hint: The Poisson distribution is the discrete probability distribution of the number of events occurring in a given time period, given the average number of times the event occurs over that time period.
Complete step by step solution :
According to the question:
Probability of getting a defective bottle (p) = $ 0.1\% = \dfrac{{0.1}}{{100}} = 0.001 $
And number of bottles in box (n) = 500
Therefore according to the poisson distribution
$ \lambda = np = 500 \times 0.001 = 0.5 $
And number of boxes (N) = 100
And from poisson distribution we know that
P(x) $ = \dfrac{{{e^{ - \lambda }}{\lambda ^x}}}{{x!}} $
Therefore number of boxes with no defective bottles (x=0) =
$
100 \times p(x = 0) \\
= 100 \times \dfrac{{{e^{ - \lambda }}{\lambda ^x}}}{{x!}}...........(x = 0) \\
= 100 \times \dfrac{{{e^{ - 0.5}}({{0.5}^0})}}{{0!}} \\
= 100 \times {e^{ - 0.5}} \\
$
Hence the required number of boxes with 0 defective bottles = $ 100 \times {e^{ - 0.5}} $
Note:In poisson distribution $ \lambda $= np here $ \lambda $ is the mean of the given distribution and n is the number of units.
Complete step by step solution :
According to the question:
Probability of getting a defective bottle (p) = $ 0.1\% = \dfrac{{0.1}}{{100}} = 0.001 $
And number of bottles in box (n) = 500
Therefore according to the poisson distribution
$ \lambda = np = 500 \times 0.001 = 0.5 $
And number of boxes (N) = 100
And from poisson distribution we know that
P(x) $ = \dfrac{{{e^{ - \lambda }}{\lambda ^x}}}{{x!}} $
Therefore number of boxes with no defective bottles (x=0) =
$
100 \times p(x = 0) \\
= 100 \times \dfrac{{{e^{ - \lambda }}{\lambda ^x}}}{{x!}}...........(x = 0) \\
= 100 \times \dfrac{{{e^{ - 0.5}}({{0.5}^0})}}{{0!}} \\
= 100 \times {e^{ - 0.5}} \\
$
Hence the required number of boxes with 0 defective bottles = $ 100 \times {e^{ - 0.5}} $
Note:In poisson distribution $ \lambda $= np here $ \lambda $ is the mean of the given distribution and n is the number of units.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

