Answer
Verified
456.9k+ views
Hint: We solve the given question by noticing the fact that distance between any two points on the cube is maximum when they are the endpoints of the diagonal of the cube. So, we start by finding the length of the diagonal of any face using Pythagoras theorem and then we select another side of the cube such that they form a right-angled triangle and use the Pythagoras theorem again to find the length of the diagonal.
Complete step-by-step answer:
We were given that the length of the side of the cube is 10cm.
We need to find the length of the longest rod that has to be fitted in the cube. As the rod has to touch the cube at two points, it means we have to find the longest distance between any two points on the sides of the cube.
Longest distance between two points of the cube is when it is the diagonal of the cube.
Let the length of the side of the cube be $ a=10cm $ .
The longest distance is the diagonal of the cube which is AG from the above figure.
First, let us find the length of the side AF which is the diagonal of the face ABFE.
As ABFE is the face of a cube, it is square with side length $ a=10cm $ . Then $ \Delta ABF $ is a right-angled triangle.
So, by using the Pythagoras theorem, which is
If a, b are adjacent sides of a right-angled triangle and c is the hypotenuse, then
$ {{a}^{2}}+{{b}^{2}}={{c}^{2}} $ .
So, by applying the Pythagoras Theorem on the $ \Delta ABF $ , we get
$ \begin{align}
& \Rightarrow \text{ }{{\left( AB \right)}^{2}}+{{\left( BF \right)}^{2}}={{\left( AF \right)}^{2}} \\
& \Rightarrow \text{ }{{\left( a \right)}^{2}}+{{\left( a \right)}^{2}}={{\left( AF \right)}^{2}} \\
& \Rightarrow \text{ }{{\left( AF \right)}^{2}}=2{{a}^{2}} \\
& \Rightarrow \text{ }AF=\sqrt{2}a \\
\end{align} $
Now consider the $ \Delta AFG $ , where $ AF=\sqrt{2}a $ , $ FG=a $ as it is a side of the cube and $ \angle F={{90}^{\circ }} $ .
So, by applying the Pythagoras Theorem again on the $ \Delta ABF $ , we get
$ \begin{align}
& \Rightarrow \text{ }{{\left( AF \right)}^{2}}+{{\left( FG \right)}^{2}}={{\left( AG \right)}^{2}} \\
& \Rightarrow \text{ }{{\left( a \right)}^{2}}+{{\left( \sqrt{2}a \right)}^{2}}={{\left( AG \right)}^{2}} \\
& \Rightarrow \text{ }{{\left( AG \right)}^{2}}={{a}^{2}}+2{{a}^{2}} \\
& \Rightarrow \text{ }{{\left( AG \right)}^{2}}=3{{a}^{2}} \\
& \Rightarrow \text{ }AG=\sqrt{3}a \\
\end{align} $
As $ a=10cm $ , by substituting it in the above obtained answer, we get
$ \begin{align}
& \Rightarrow \text{ }AG=\sqrt{3}a \\
& \Rightarrow \text{ }AG=\sqrt{3}\times 10 \\
& \Rightarrow \text{ }AG=10\sqrt{3}cms \\
\end{align} $
So, we get that the length of the diagonal of the cube is equal to $ 10\sqrt{3}cms $ .
So, the length of the longest rod that can fit in a cube of side 10cms is $ 10\sqrt{3}cms $ .
So, the correct answer is “Option C”.
Note: There is a possibility of one making a mistake by considering the diagonal of a face of the cube as the diagonal of the cube, then the answer obtained will be $ 10\sqrt{2}cms $ , but it is wrong as the longest distance between two points in a cube is the diagonal between opposite edges of the cube not between that of the edges of the face of the cube.
Complete step-by-step answer:
We were given that the length of the side of the cube is 10cm.
We need to find the length of the longest rod that has to be fitted in the cube. As the rod has to touch the cube at two points, it means we have to find the longest distance between any two points on the sides of the cube.
Longest distance between two points of the cube is when it is the diagonal of the cube.
Let the length of the side of the cube be $ a=10cm $ .
The longest distance is the diagonal of the cube which is AG from the above figure.
First, let us find the length of the side AF which is the diagonal of the face ABFE.
As ABFE is the face of a cube, it is square with side length $ a=10cm $ . Then $ \Delta ABF $ is a right-angled triangle.
So, by using the Pythagoras theorem, which is
If a, b are adjacent sides of a right-angled triangle and c is the hypotenuse, then
$ {{a}^{2}}+{{b}^{2}}={{c}^{2}} $ .
So, by applying the Pythagoras Theorem on the $ \Delta ABF $ , we get
$ \begin{align}
& \Rightarrow \text{ }{{\left( AB \right)}^{2}}+{{\left( BF \right)}^{2}}={{\left( AF \right)}^{2}} \\
& \Rightarrow \text{ }{{\left( a \right)}^{2}}+{{\left( a \right)}^{2}}={{\left( AF \right)}^{2}} \\
& \Rightarrow \text{ }{{\left( AF \right)}^{2}}=2{{a}^{2}} \\
& \Rightarrow \text{ }AF=\sqrt{2}a \\
\end{align} $
Now consider the $ \Delta AFG $ , where $ AF=\sqrt{2}a $ , $ FG=a $ as it is a side of the cube and $ \angle F={{90}^{\circ }} $ .
So, by applying the Pythagoras Theorem again on the $ \Delta ABF $ , we get
$ \begin{align}
& \Rightarrow \text{ }{{\left( AF \right)}^{2}}+{{\left( FG \right)}^{2}}={{\left( AG \right)}^{2}} \\
& \Rightarrow \text{ }{{\left( a \right)}^{2}}+{{\left( \sqrt{2}a \right)}^{2}}={{\left( AG \right)}^{2}} \\
& \Rightarrow \text{ }{{\left( AG \right)}^{2}}={{a}^{2}}+2{{a}^{2}} \\
& \Rightarrow \text{ }{{\left( AG \right)}^{2}}=3{{a}^{2}} \\
& \Rightarrow \text{ }AG=\sqrt{3}a \\
\end{align} $
As $ a=10cm $ , by substituting it in the above obtained answer, we get
$ \begin{align}
& \Rightarrow \text{ }AG=\sqrt{3}a \\
& \Rightarrow \text{ }AG=\sqrt{3}\times 10 \\
& \Rightarrow \text{ }AG=10\sqrt{3}cms \\
\end{align} $
So, we get that the length of the diagonal of the cube is equal to $ 10\sqrt{3}cms $ .
So, the length of the longest rod that can fit in a cube of side 10cms is $ 10\sqrt{3}cms $ .
So, the correct answer is “Option C”.
Note: There is a possibility of one making a mistake by considering the diagonal of a face of the cube as the diagonal of the cube, then the answer obtained will be $ 10\sqrt{2}cms $ , but it is wrong as the longest distance between two points in a cube is the diagonal between opposite edges of the cube not between that of the edges of the face of the cube.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE