Answer
Verified
497.1k+ views
Hint- This question is solved by using $\tan \theta $.
Now given that, the length of the shadow of a tower on the plane ground is $\sqrt 3 $ times the height of the tower.
Let the height of the tower be $AB$.
And the length of the shadow of the tower is $BC$ .
Therefore, the length of the shadow of the tower, $BC = \sqrt 3 AB$ .
Let the angle of elevation of the sun is $\theta $ ,
In right angled triangle $ABC$,
$
tan\theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}} \\
tan\theta = \dfrac{{AB}}{{BC}} \\
$
Now putting the values of $BC$ we get,
$
tan\theta = \dfrac{{AB}}{{\sqrt 3 AB}} \\
or{\text{ }}tan\theta = \dfrac{1}{{\sqrt 3 }} \\
or{\text{ }}\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} \\
{\text{or tan}}\theta {\text{ = tan3}}{0^ \circ } \\
{\text{or }}\theta {\text{ = 3}}{0^ \circ } \\
$
Hence, the angle of elevation of the sun is${30^ \circ }$ .
Thus, the correct option is $\left( B \right)$.
Note- When we face such types of questions firstly draw the figure and then analyze what we have to find like we did in this question. Here we firstly write the relation between length of tower and height of shadow of the tower and then use $\tan \theta $ from where we get the value of$\theta $ and hence we get our answer.
Now given that, the length of the shadow of a tower on the plane ground is $\sqrt 3 $ times the height of the tower.
Let the height of the tower be $AB$.
And the length of the shadow of the tower is $BC$ .
Therefore, the length of the shadow of the tower, $BC = \sqrt 3 AB$ .
Let the angle of elevation of the sun is $\theta $ ,
In right angled triangle $ABC$,
$
tan\theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}} \\
tan\theta = \dfrac{{AB}}{{BC}} \\
$
Now putting the values of $BC$ we get,
$
tan\theta = \dfrac{{AB}}{{\sqrt 3 AB}} \\
or{\text{ }}tan\theta = \dfrac{1}{{\sqrt 3 }} \\
or{\text{ }}\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} \\
{\text{or tan}}\theta {\text{ = tan3}}{0^ \circ } \\
{\text{or }}\theta {\text{ = 3}}{0^ \circ } \\
$
Hence, the angle of elevation of the sun is${30^ \circ }$ .
Thus, the correct option is $\left( B \right)$.
Note- When we face such types of questions firstly draw the figure and then analyze what we have to find like we did in this question. Here we firstly write the relation between length of tower and height of shadow of the tower and then use $\tan \theta $ from where we get the value of$\theta $ and hence we get our answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it