
The length of a shadow of a tower on the plane ground is$\sqrt 3 $ times the height of the
tower. The angle of elevation of sun is:
$A.{\text{ }}{45^ \circ }$
$B.{\text{ 3}}{0^ \circ }$
$C.{\text{ }}{60^ \circ }$
$D.{\text{ }}{90^ \circ }$
Answer
595.5k+ views
Hint- This question is solved by using $\tan \theta $.
Now given that, the length of the shadow of a tower on the plane ground is $\sqrt 3 $ times the height of the tower.
Let the height of the tower be $AB$.
And the length of the shadow of the tower is $BC$ .
Therefore, the length of the shadow of the tower, $BC = \sqrt 3 AB$ .
Let the angle of elevation of the sun is $\theta $ ,
In right angled triangle $ABC$,
$
tan\theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}} \\
tan\theta = \dfrac{{AB}}{{BC}} \\
$
Now putting the values of $BC$ we get,
$
tan\theta = \dfrac{{AB}}{{\sqrt 3 AB}} \\
or{\text{ }}tan\theta = \dfrac{1}{{\sqrt 3 }} \\
or{\text{ }}\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} \\
{\text{or tan}}\theta {\text{ = tan3}}{0^ \circ } \\
{\text{or }}\theta {\text{ = 3}}{0^ \circ } \\
$
Hence, the angle of elevation of the sun is${30^ \circ }$ .
Thus, the correct option is $\left( B \right)$.
Note- When we face such types of questions firstly draw the figure and then analyze what we have to find like we did in this question. Here we firstly write the relation between length of tower and height of shadow of the tower and then use $\tan \theta $ from where we get the value of$\theta $ and hence we get our answer.
Now given that, the length of the shadow of a tower on the plane ground is $\sqrt 3 $ times the height of the tower.
Let the height of the tower be $AB$.
And the length of the shadow of the tower is $BC$ .
Therefore, the length of the shadow of the tower, $BC = \sqrt 3 AB$ .
Let the angle of elevation of the sun is $\theta $ ,
In right angled triangle $ABC$,
$
tan\theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}} \\
tan\theta = \dfrac{{AB}}{{BC}} \\
$
Now putting the values of $BC$ we get,
$
tan\theta = \dfrac{{AB}}{{\sqrt 3 AB}} \\
or{\text{ }}tan\theta = \dfrac{1}{{\sqrt 3 }} \\
or{\text{ }}\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} \\
{\text{or tan}}\theta {\text{ = tan3}}{0^ \circ } \\
{\text{or }}\theta {\text{ = 3}}{0^ \circ } \\
$
Hence, the angle of elevation of the sun is${30^ \circ }$ .
Thus, the correct option is $\left( B \right)$.
Note- When we face such types of questions firstly draw the figure and then analyze what we have to find like we did in this question. Here we firstly write the relation between length of tower and height of shadow of the tower and then use $\tan \theta $ from where we get the value of$\theta $ and hence we get our answer.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

