The inner diameter of a circular well is 3.5 m. It is 10 m deep. Find
i). its inner curved surface area
ii). the cost of plastering the curved surface at the rate of Rs 40 per m2.
Answer
Verified
509.7k+ views
Hint- Here, we will be proceeding by using the formula for curved surface area of the cylinder.
Given, the inner diameter of a circular well $d = 3.5$ m
Depth or height of the circular well $h = 10$ m
Radius of the circular well $r = \dfrac{d}{2} = \dfrac{{3.5}}{2} = 1.75$ m
Since, a circular well will be cylindrical in shape.
As we know that the formula for the inner curved surface area of a cylinder with inner radius $r$ and height $h$ is given by ${\text{Inner curved surface area}} = 2\pi rh$
Using above formula, we get
i. ${\text{Inner curved surface area}} = 2\left( {\dfrac{{22}}{7}} \right)\left( {1.75} \right)\left( {10} \right) = 110$ m2.
ii. Also, given \[{\text{cost of plastering the curved surface}} = {\text{Rs 40 per }}{{\text{m}}^2}\]
\[ \Rightarrow {\text{Cost of plastering the curved surface}} = 40 \times \left( {{\text{Curved surface area}}} \right) = 40 \times 110 = {\text{Rs }}4400\]
Note- For this particular problem, in the cost of plastering the curved surface of the circular well we are considering the inner surface area of the circular well (inner curved surface of cylinder obtained in the first part of the problem) because no information is given for the outer curved surface area.
Given, the inner diameter of a circular well $d = 3.5$ m
Depth or height of the circular well $h = 10$ m
Radius of the circular well $r = \dfrac{d}{2} = \dfrac{{3.5}}{2} = 1.75$ m
Since, a circular well will be cylindrical in shape.
As we know that the formula for the inner curved surface area of a cylinder with inner radius $r$ and height $h$ is given by ${\text{Inner curved surface area}} = 2\pi rh$
Using above formula, we get
i. ${\text{Inner curved surface area}} = 2\left( {\dfrac{{22}}{7}} \right)\left( {1.75} \right)\left( {10} \right) = 110$ m2.
ii. Also, given \[{\text{cost of plastering the curved surface}} = {\text{Rs 40 per }}{{\text{m}}^2}\]
\[ \Rightarrow {\text{Cost of plastering the curved surface}} = 40 \times \left( {{\text{Curved surface area}}} \right) = 40 \times 110 = {\text{Rs }}4400\]
Note- For this particular problem, in the cost of plastering the curved surface of the circular well we are considering the inner surface area of the circular well (inner curved surface of cylinder obtained in the first part of the problem) because no information is given for the outer curved surface area.
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it