Answer

Verified

486k+ views

Hint:- Apply Pythagoras Theorem.

Let the two legs of the triangle be \[x\] and \[y\].

And let the smaller leg be \[x\].

And the larger leg be \[y\].

As, we are given with the initial length of hypotenuse of the right-angled triangle.

So, according to Pythagoras theorem.

Sum of squares of two sides of a right-angled triangle is equal to the square of its hypotenuse.

So, \[{\left( x \right)^2} + {\left( y \right)^2} = {\left( {3\sqrt {10} } \right)^2}\]

\[ \Rightarrow {\left( x \right)^2} + {\left( y \right)^2} = 90\] (1)

Now, going to the other condition,

Smaller leg is tripled. So, the smaller leg becomes \[3x\].

Larger leg is doubled. So, the larger leg becomes \[2y\].

And, as given in the question, that new hypotenuse is \[9\sqrt 5 \].

So, again applying Pythagora's theorem.

\[{\left( {3x} \right)^2} + {\left( {2y} \right)^2} = {\left( {9\sqrt 5 } \right)^2}\]

\[ \Rightarrow 9{x^2} + 4{y^2} = 405\] (2)

Now, we had to find the value of\[x\] and \[y\] using equation 1 and 2.

So, splitting \[9{x^2}\] from equation 2. We get,

\[ \Rightarrow 5{x^2} + 4({x^2} + {y^2}) = 405\]

Now, putting the value of \[{x^2} + {y^2}\] from equation 1 to above equation we get.

\[

\Rightarrow 5{x^2} + 360 = 405 \\

\Rightarrow 5{x^2} = 405 - 360 = 45 \\

\Rightarrow {x^2} = 9 \\

\]

As, \[x\] and \[y\] are the length of sides of a triangle. So, they can have only positive values.

So, \[x = 3\]

Now, putting the value of \[x\] in equation 1. We get,

\[

\Rightarrow {y^2} + 9 = 90 \\

\Rightarrow {y^2} = 81 \\

\Rightarrow y = 9 \\

\]

Hence, sides of the right-angled triangle are 9cm and 3cm.

Note:-In these types of problems first find all the equations for the given conditions

using Pythagoras theorem. And then find the value of each side by solving the quadratic

equation. And remember that the length of the side should always be positive.

Let the two legs of the triangle be \[x\] and \[y\].

And let the smaller leg be \[x\].

And the larger leg be \[y\].

As, we are given with the initial length of hypotenuse of the right-angled triangle.

So, according to Pythagoras theorem.

Sum of squares of two sides of a right-angled triangle is equal to the square of its hypotenuse.

So, \[{\left( x \right)^2} + {\left( y \right)^2} = {\left( {3\sqrt {10} } \right)^2}\]

\[ \Rightarrow {\left( x \right)^2} + {\left( y \right)^2} = 90\] (1)

Now, going to the other condition,

Smaller leg is tripled. So, the smaller leg becomes \[3x\].

Larger leg is doubled. So, the larger leg becomes \[2y\].

And, as given in the question, that new hypotenuse is \[9\sqrt 5 \].

So, again applying Pythagora's theorem.

\[{\left( {3x} \right)^2} + {\left( {2y} \right)^2} = {\left( {9\sqrt 5 } \right)^2}\]

\[ \Rightarrow 9{x^2} + 4{y^2} = 405\] (2)

Now, we had to find the value of\[x\] and \[y\] using equation 1 and 2.

So, splitting \[9{x^2}\] from equation 2. We get,

\[ \Rightarrow 5{x^2} + 4({x^2} + {y^2}) = 405\]

Now, putting the value of \[{x^2} + {y^2}\] from equation 1 to above equation we get.

\[

\Rightarrow 5{x^2} + 360 = 405 \\

\Rightarrow 5{x^2} = 405 - 360 = 45 \\

\Rightarrow {x^2} = 9 \\

\]

As, \[x\] and \[y\] are the length of sides of a triangle. So, they can have only positive values.

So, \[x = 3\]

Now, putting the value of \[x\] in equation 1. We get,

\[

\Rightarrow {y^2} + 9 = 90 \\

\Rightarrow {y^2} = 81 \\

\Rightarrow y = 9 \\

\]

Hence, sides of the right-angled triangle are 9cm and 3cm.

Note:-In these types of problems first find all the equations for the given conditions

using Pythagoras theorem. And then find the value of each side by solving the quadratic

equation. And remember that the length of the side should always be positive.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE