
The H.M. of the reciprocal of first n natural numbers is
A) $\dfrac{{n + 1}}{2}$
B) $\dfrac{n}{{\left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + .... + \dfrac{1}{n}} \right)}}$
C) $\dfrac{2}{{n + 1}}$
D) None of these
Answer
508.2k+ views
Hint: The reciprocal of first n natural numbers is given by
$ \Rightarrow $Reciprocal of first n natural numbers$ = 1,\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},........,\dfrac{1}{n}$
Now, the harmonic mean is the reciprocal of the arithmetic mean. The Harmonic Mean can be given by the formula
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{n}{{\sum\limits_{i = 1}^n i }}$
Using this formula, we will get our answer.
Complete step by step solution:
In this question, we are asked to find the Harmonic Mean (H.M.) of the reciprocal of first n natural numbers.
By definition harmonic mean is the reciprocal of arithmetic mean.
Suppose we are given some data ${X_1},{X_2},{X_3},.......,{X_n}$ then the harmonic mean of this ungrouped data is given by
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{n}{{\sum\limits_{n = 1}^n {{X_n}} }}$
So, here we have to find the Harmonic Mean of the reciprocal of first n natural numbers. Now, first n natural numbers are given by
$ \Rightarrow $First n natural numbers$ = 1,2,3,.......,n$
And the reciprocal of first n natural numbers is given by
$ \Rightarrow $Reciprocal of first n natural numbers$ = 1,\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},........,\dfrac{1}{n}$
Now, the sum of $1,\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},........,\dfrac{1}{n}$ is given by
$1 + \dfrac{1}{2} + \dfrac{1}{3} + ..... + \dfrac{1}{n} = \dfrac{{n\left( {n + 1} \right)}}{2}$
Therefore, we get
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{n}{{\sum\limits_{i = 1}^n {\left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + ...... + \dfrac{1}{n}} \right)} }}$
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{n}{{\dfrac{{n\left( {n + 1} \right)}}{2}}}$
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{2}{{n + 1}}$
Hence, the Harmonic Mean of the reciprocal of first n natural numbers is $\dfrac{2}{{n + 1}}$. So, the correct option is option (C).
Note:
> While finding the harmonic mean of all constant numbers (c), the H.M. will be also c.
> As compared to arithmetic mean and geometric mean, the Harmonic mean has the least value, that is
$\text{AM > GM > HM}$
$ \Rightarrow $Reciprocal of first n natural numbers$ = 1,\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},........,\dfrac{1}{n}$
Now, the harmonic mean is the reciprocal of the arithmetic mean. The Harmonic Mean can be given by the formula
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{n}{{\sum\limits_{i = 1}^n i }}$
Using this formula, we will get our answer.
Complete step by step solution:
In this question, we are asked to find the Harmonic Mean (H.M.) of the reciprocal of first n natural numbers.
By definition harmonic mean is the reciprocal of arithmetic mean.
Suppose we are given some data ${X_1},{X_2},{X_3},.......,{X_n}$ then the harmonic mean of this ungrouped data is given by
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{n}{{\sum\limits_{n = 1}^n {{X_n}} }}$
So, here we have to find the Harmonic Mean of the reciprocal of first n natural numbers. Now, first n natural numbers are given by
$ \Rightarrow $First n natural numbers$ = 1,2,3,.......,n$
And the reciprocal of first n natural numbers is given by
$ \Rightarrow $Reciprocal of first n natural numbers$ = 1,\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},........,\dfrac{1}{n}$
Now, the sum of $1,\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},........,\dfrac{1}{n}$ is given by
$1 + \dfrac{1}{2} + \dfrac{1}{3} + ..... + \dfrac{1}{n} = \dfrac{{n\left( {n + 1} \right)}}{2}$
Therefore, we get
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{n}{{\sum\limits_{i = 1}^n {\left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + ...... + \dfrac{1}{n}} \right)} }}$
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{n}{{\dfrac{{n\left( {n + 1} \right)}}{2}}}$
$ \Rightarrow $Harmonic Mean (H.M.)$ = \dfrac{2}{{n + 1}}$
Hence, the Harmonic Mean of the reciprocal of first n natural numbers is $\dfrac{2}{{n + 1}}$. So, the correct option is option (C).
Note:
> While finding the harmonic mean of all constant numbers (c), the H.M. will be also c.
> As compared to arithmetic mean and geometric mean, the Harmonic mean has the least value, that is
$\text{AM > GM > HM}$
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

