The HCF of two numbers is 16 and their product is 3072 Find their LCM
Answer
362.7k+ views
Hint: Here we will use the formula that product of two numbers is equal to product of their HCF and LCM
Let us consider $a$ and $b$ are the two numbers
So, their product is equal to $a \times b = 3072$
And HCF of two numbers i.e. HCF $(a,b) = 16$
Here we have find the LCM of two number i.e. LCM $(a,b)$
We know that product of two numbers is equal to product of their HCF and LCM
So,
$(a \times b) = HCF(a,b) \times LCM(a,b)$
$3072 = 16 \times LCM(a,b)$
$LCM = \dfrac{{3072}}{{16}}$
$LCM = 192$
Therefore LCM of two numbers is=$192$
NOTE: In this type of problems before solving it directly it is better to go with formula which has direct substitutions with given values as we have done in the above problems that we have taken the formula that has direct substitution which is a simple trick
Let us consider $a$ and $b$ are the two numbers
So, their product is equal to $a \times b = 3072$
And HCF of two numbers i.e. HCF $(a,b) = 16$
Here we have find the LCM of two number i.e. LCM $(a,b)$
We know that product of two numbers is equal to product of their HCF and LCM
So,
$(a \times b) = HCF(a,b) \times LCM(a,b)$
$3072 = 16 \times LCM(a,b)$
$LCM = \dfrac{{3072}}{{16}}$
$LCM = 192$
Therefore LCM of two numbers is=$192$
NOTE: In this type of problems before solving it directly it is better to go with formula which has direct substitutions with given values as we have done in the above problems that we have taken the formula that has direct substitution which is a simple trick
Last updated date: 24th Sep 2023
•
Total views: 362.7k
•
Views today: 6.62k