
The given equation $\int {\dfrac{{1 - {x^2}}}{{(1 + {x^2})\sqrt {1 + {x^4}} }}dx} $ is equal to:
A.$\sqrt 2 {\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
B.$\dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
C.$\dfrac{1}{2}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
D.None of these
Answer
621.9k+ views
Hint: Use substitution method of integration and let's take $\dfrac{1}{x} + x$ as t and then solve with respect to t first and later substitute its value.
Consider the given integral as I. Now,
$\
I = \int {\dfrac{{1 - {x^2}}}{{(1 + {x^2})\sqrt {1 + {x^4}} }}dx} \\
\Rightarrow I = \int {\dfrac{{{x^2}(\dfrac{1}{{{x^2}}} - 1)}}{{{x^2}(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\ $
Observe that, If, we consider $\dfrac{1}{x} + x$ as t then, on differentiating, we can get $ - \dfrac{1}{{{x^2}}} + 1$ as $dt$ .Using these information,
$\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{ - dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}{\text{ }}[{x^2} + \dfrac{1}{{{x^2}}} = {{(x + \dfrac{1}{x})}^2} - 2]} \\
\Rightarrow I = - \int {\dfrac{{dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}} \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\cos e{c^{ - 1}}(\dfrac{{x + \dfrac{1}{x}}}{{\sqrt 2 }}) + c \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c \\
\ $
Hence the given integral $I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
Option B is correct.
Note: There is one more method to solve this integral by substitution x with a trigonometric function. We found that this method is easier to understand.
Consider the given integral as I. Now,
$\
I = \int {\dfrac{{1 - {x^2}}}{{(1 + {x^2})\sqrt {1 + {x^4}} }}dx} \\
\Rightarrow I = \int {\dfrac{{{x^2}(\dfrac{1}{{{x^2}}} - 1)}}{{{x^2}(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\ $
Observe that, If, we consider $\dfrac{1}{x} + x$ as t then, on differentiating, we can get $ - \dfrac{1}{{{x^2}}} + 1$ as $dt$ .Using these information,
$\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{ - dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}{\text{ }}[{x^2} + \dfrac{1}{{{x^2}}} = {{(x + \dfrac{1}{x})}^2} - 2]} \\
\Rightarrow I = - \int {\dfrac{{dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}} \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\cos e{c^{ - 1}}(\dfrac{{x + \dfrac{1}{x}}}{{\sqrt 2 }}) + c \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c \\
\ $
Hence the given integral $I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
Option B is correct.
Note: There is one more method to solve this integral by substitution x with a trigonometric function. We found that this method is easier to understand.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

