The given equation $\int {\dfrac{{1 - {x^2}}}{{(1 + {x^2})\sqrt {1 + {x^4}} }}dx} $ is equal to:
A.$\sqrt 2 {\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
B.$\dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
C.$\dfrac{1}{2}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
D.None of these
Answer
363.9k+ views
Hint: Use substitution method of integration and let's take $\dfrac{1}{x} + x$ as t and then solve with respect to t first and later substitute its value.
Consider the given integral as I. Now,
$\
I = \int {\dfrac{{1 - {x^2}}}{{(1 + {x^2})\sqrt {1 + {x^4}} }}dx} \\
\Rightarrow I = \int {\dfrac{{{x^2}(\dfrac{1}{{{x^2}}} - 1)}}{{{x^2}(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\ $
Observe that, If, we consider $\dfrac{1}{x} + x$ as t then, on differentiating, we can get $ - \dfrac{1}{{{x^2}}} + 1$ as $dt$ .Using these information,
$\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{ - dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}{\text{ }}[{x^2} + \dfrac{1}{{{x^2}}} = {{(x + \dfrac{1}{x})}^2} - 2]} \\
\Rightarrow I = - \int {\dfrac{{dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}} \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\cos e{c^{ - 1}}(\dfrac{{x + \dfrac{1}{x}}}{{\sqrt 2 }}) + c \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c \\
\ $
Hence the given integral $I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
Option B is correct.
Note: There is one more method to solve this integral by substitution x with a trigonometric function. We found that this method is easier to understand.
Consider the given integral as I. Now,
$\
I = \int {\dfrac{{1 - {x^2}}}{{(1 + {x^2})\sqrt {1 + {x^4}} }}dx} \\
\Rightarrow I = \int {\dfrac{{{x^2}(\dfrac{1}{{{x^2}}} - 1)}}{{{x^2}(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\ $
Observe that, If, we consider $\dfrac{1}{x} + x$ as t then, on differentiating, we can get $ - \dfrac{1}{{{x^2}}} + 1$ as $dt$ .Using these information,
$\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{ - dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}{\text{ }}[{x^2} + \dfrac{1}{{{x^2}}} = {{(x + \dfrac{1}{x})}^2} - 2]} \\
\Rightarrow I = - \int {\dfrac{{dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}} \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\cos e{c^{ - 1}}(\dfrac{{x + \dfrac{1}{x}}}{{\sqrt 2 }}) + c \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c \\
\ $
Hence the given integral $I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
Option B is correct.
Note: There is one more method to solve this integral by substitution x with a trigonometric function. We found that this method is easier to understand.
Last updated date: 29th Sep 2023
•
Total views: 363.9k
•
Views today: 5.63k
Recently Updated Pages
What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE
