
The given equation $\int {\dfrac{{1 - {x^2}}}{{(1 + {x^2})\sqrt {1 + {x^4}} }}dx} $ is equal to:
A.$\sqrt 2 {\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
B.$\dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
C.$\dfrac{1}{2}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
D.None of these
Answer
595.5k+ views
Hint: Use substitution method of integration and let's take $\dfrac{1}{x} + x$ as t and then solve with respect to t first and later substitute its value.
Consider the given integral as I. Now,
$\
I = \int {\dfrac{{1 - {x^2}}}{{(1 + {x^2})\sqrt {1 + {x^4}} }}dx} \\
\Rightarrow I = \int {\dfrac{{{x^2}(\dfrac{1}{{{x^2}}} - 1)}}{{{x^2}(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\ $
Observe that, If, we consider $\dfrac{1}{x} + x$ as t then, on differentiating, we can get $ - \dfrac{1}{{{x^2}}} + 1$ as $dt$ .Using these information,
$\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{ - dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}{\text{ }}[{x^2} + \dfrac{1}{{{x^2}}} = {{(x + \dfrac{1}{x})}^2} - 2]} \\
\Rightarrow I = - \int {\dfrac{{dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}} \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\cos e{c^{ - 1}}(\dfrac{{x + \dfrac{1}{x}}}{{\sqrt 2 }}) + c \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c \\
\ $
Hence the given integral $I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
Option B is correct.
Note: There is one more method to solve this integral by substitution x with a trigonometric function. We found that this method is easier to understand.
Consider the given integral as I. Now,
$\
I = \int {\dfrac{{1 - {x^2}}}{{(1 + {x^2})\sqrt {1 + {x^4}} }}dx} \\
\Rightarrow I = \int {\dfrac{{{x^2}(\dfrac{1}{{{x^2}}} - 1)}}{{{x^2}(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\ $
Observe that, If, we consider $\dfrac{1}{x} + x$ as t then, on differentiating, we can get $ - \dfrac{1}{{{x^2}}} + 1$ as $dt$ .Using these information,
$\
\Rightarrow I = \int {\dfrac{{(\dfrac{1}{{{x^2}}} - 1)}}{{(\dfrac{1}{x} + x)\sqrt {\dfrac{1}{{{x^2}}} + {x^2}} }}dx} \\
\Rightarrow I = \int {\dfrac{{ - dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}{\text{ }}[{x^2} + \dfrac{1}{{{x^2}}} = {{(x + \dfrac{1}{x})}^2} - 2]} \\
\Rightarrow I = - \int {\dfrac{{dt}}{{t\sqrt {{t^2} - {{(\sqrt 2 )}^2}} }}} \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\cos e{c^{ - 1}}(\dfrac{{x + \dfrac{1}{x}}}{{\sqrt 2 }}) + c \\
\Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c \\
\ $
Hence the given integral $I = \dfrac{1}{{\sqrt 2 }}{\sin ^{ - 1}}(\dfrac{{\sqrt 2 x}}{{{x^2} + 1}}) + c$
Option B is correct.
Note: There is one more method to solve this integral by substitution x with a trigonometric function. We found that this method is easier to understand.
Recently Updated Pages
Explain the double helix structure of DNA with a labeled class 10 biology CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

Which party gave the slogan Save Democracy in the Lok class 10 social science CBSE

iWhat is Rain Water Harvesting iiWhat are the advantages class 10 social science CBSE

Explain any 5 effects of the Russian Revolution of class 10 social science CBSE

Refractive index of glass with respect to water is class 10 physics CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

The uses of bleaching powder are A It is used bleaching class 10 chemistry CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

The capital of British India was transferred from Calcutta class 10 social science CBSE

Write any two uses of Plaster of Paris class 10 chemistry CBSE

