Answer
Verified
477.9k+ views
Hint: The sum of the A.P is ${{\text{S}}_n} = \dfrac{n}{2}\left( {{a_1} + {a_n}} \right)$, use this property of A.P. Where ${a_1}$and ${a_n}$ are the first and last term respectively, and n is the number of terms.
Complete step by step answer:
Given: -
First term of an A.P$\left( {{a_1}} \right) = 17$
Last term of an A.P$\left( {{a_n}} \right) = 350$
Common difference$\left( d \right) = 9$
Now, we have to find out the number of terms and the sum of this A.P.
First find out the number of terms of this A.P.
${a_n} = {a_1} + \left( {n - 1} \right)d$, (where n is number of terms)
$
\Rightarrow 350 = 17 + \left( {n - 1} \right)9 \\
\Rightarrow \left( {n - 1} \right) = \dfrac{{350 - 17}}{9} = \dfrac{{333}}{9} = 37 \\
\Rightarrow n = 37 + 1 = 38 \\
$
As we know the sum of the A.P is given as
$
{{\text{S}}_n} = \dfrac{n}{2}\left( {{a_1} + {a_n}} \right) \\
\Rightarrow {{\text{S}}_n} = \dfrac{{38}}{2}\left( {17 + 350} \right) = \dfrac{{38}}{2}\left( {367} \right) = 6973 \\
$
So, the required number of terms in an A.P is 38 and the required sum is 6973.
Note: In such types of questions the key concept we have to remember is that always remember the general formula to find out the number of terms and the sum of an A.P which is stated above, so first find out the number of terms, then find out the required sum of the series.
Complete step by step answer:
Given: -
First term of an A.P$\left( {{a_1}} \right) = 17$
Last term of an A.P$\left( {{a_n}} \right) = 350$
Common difference$\left( d \right) = 9$
Now, we have to find out the number of terms and the sum of this A.P.
First find out the number of terms of this A.P.
${a_n} = {a_1} + \left( {n - 1} \right)d$, (where n is number of terms)
$
\Rightarrow 350 = 17 + \left( {n - 1} \right)9 \\
\Rightarrow \left( {n - 1} \right) = \dfrac{{350 - 17}}{9} = \dfrac{{333}}{9} = 37 \\
\Rightarrow n = 37 + 1 = 38 \\
$
As we know the sum of the A.P is given as
$
{{\text{S}}_n} = \dfrac{n}{2}\left( {{a_1} + {a_n}} \right) \\
\Rightarrow {{\text{S}}_n} = \dfrac{{38}}{2}\left( {17 + 350} \right) = \dfrac{{38}}{2}\left( {367} \right) = 6973 \\
$
So, the required number of terms in an A.P is 38 and the required sum is 6973.
Note: In such types of questions the key concept we have to remember is that always remember the general formula to find out the number of terms and the sum of an A.P which is stated above, so first find out the number of terms, then find out the required sum of the series.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE