Answer
Verified
491.1k+ views
Hint: Use the fact that in an A.P ${{S}_{n}}=\dfrac{n}{2}\left( a+{{a}_{n}} \right)$ and ${{a}_{n}}=a+(n-1)d$. Solve the two equations to get the value of n (the number of terms) and d (the common difference).
Complete step-by-step answer:
An arithmetic progression is a sequence of numbers in which adjacent numbers differ by a constant factor.
It is represented in the form a, a+d, a+2d, …
a is called the first term of the A.P and d the common difference.
Here it is given that a = 7 ,${{a}_{n}}=49$and ${{S}_{n}}=420$
We know that in an A.P ${{S}_{n}}=\dfrac{n}{2}\left( a+{{a}_{n}} \right)$
Using we get $420=\dfrac{n}{2}\left( 7+49 \right)$
$\Rightarrow 420=\dfrac{n}{2}\times 56$
$\Rightarrow 420=28n$
Dividing both sides by 28, we get
$\dfrac{420}{28}=\dfrac{28n}{28}$
$\Rightarrow 15=n$
Hence n = 15.
We know that in an A.P ${{a}_{n}}=a+\left( n-1 \right)d$
Using we get
$49=7+\left( 15-1 \right)d$
i.e. $49=7+14d$
Subtracting 7 from both sides we get
$49-7=7+14d-7$
$\Rightarrow 42=14d$
Dividing both sides by 14 we get
$\dfrac{42}{14}=\dfrac{14d}{14}$
i.e. 3 = d
Hence d = 3.
Hence the common difference of the A.P = 3.
Note: [a] This question can also be solved using the formula ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
Using ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$ we get
$420=\dfrac{n}{2}\left[ 2\times 7+\left( n-1 \right)d \right]\text{ (i)}$
Also ${{a}_{n}}=a+\left( n-1 \right)d$
Using we get
$49=7+\left( n-1 \right)d$
Subtracting 7 from both sides we get
$49-7=7+\left( n-1 \right)d-7$
$\Rightarrow 42=\left( n-1 \right)d\text{ (ii)}$
Substituting the value of $\left( n-1 \right)d$in equation (i) we get
$420=\dfrac{n}{2}\left( 2\times 7+42 \right)$
i.e. $420=\dfrac{n}{2}\left( 14+42 \right)$
$\Rightarrow 420=\dfrac{n}{2}(56)$
$\Rightarrow 420=28n$
Dividing both sides by 28 we get
\[\dfrac{420}{28}=\dfrac{28n}{28}\]
i.e. n = 15.
Substituting the value of n in equation (ii), we get
$42=\left( 15-1 \right)d$
i.e.
$42=14d$
Dividing both sides by 14 we get
$\dfrac{42}{14}=\dfrac{14d}{14}$
i.e. d = 3.
[b] Some of the most important formulae in A.P are:
[1] ${{a}_{n}}=a+\left( n-1 \right)d$
[2] ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
[3] ${{S}_{n}}=\dfrac{n}{2}\left[ 2l-\left( n-1 \right)d \right]$ where l is the last term.
[4] ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
[5] ${{a}_{n}}={{S}_{n}}-{{S}_{n-1}}$
Complete step-by-step answer:
An arithmetic progression is a sequence of numbers in which adjacent numbers differ by a constant factor.
It is represented in the form a, a+d, a+2d, …
a is called the first term of the A.P and d the common difference.
Here it is given that a = 7 ,${{a}_{n}}=49$and ${{S}_{n}}=420$
We know that in an A.P ${{S}_{n}}=\dfrac{n}{2}\left( a+{{a}_{n}} \right)$
Using we get $420=\dfrac{n}{2}\left( 7+49 \right)$
$\Rightarrow 420=\dfrac{n}{2}\times 56$
$\Rightarrow 420=28n$
Dividing both sides by 28, we get
$\dfrac{420}{28}=\dfrac{28n}{28}$
$\Rightarrow 15=n$
Hence n = 15.
We know that in an A.P ${{a}_{n}}=a+\left( n-1 \right)d$
Using we get
$49=7+\left( 15-1 \right)d$
i.e. $49=7+14d$
Subtracting 7 from both sides we get
$49-7=7+14d-7$
$\Rightarrow 42=14d$
Dividing both sides by 14 we get
$\dfrac{42}{14}=\dfrac{14d}{14}$
i.e. 3 = d
Hence d = 3.
Hence the common difference of the A.P = 3.
Note: [a] This question can also be solved using the formula ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
Using ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$ we get
$420=\dfrac{n}{2}\left[ 2\times 7+\left( n-1 \right)d \right]\text{ (i)}$
Also ${{a}_{n}}=a+\left( n-1 \right)d$
Using we get
$49=7+\left( n-1 \right)d$
Subtracting 7 from both sides we get
$49-7=7+\left( n-1 \right)d-7$
$\Rightarrow 42=\left( n-1 \right)d\text{ (ii)}$
Substituting the value of $\left( n-1 \right)d$in equation (i) we get
$420=\dfrac{n}{2}\left( 2\times 7+42 \right)$
i.e. $420=\dfrac{n}{2}\left( 14+42 \right)$
$\Rightarrow 420=\dfrac{n}{2}(56)$
$\Rightarrow 420=28n$
Dividing both sides by 28 we get
\[\dfrac{420}{28}=\dfrac{28n}{28}\]
i.e. n = 15.
Substituting the value of n in equation (ii), we get
$42=\left( 15-1 \right)d$
i.e.
$42=14d$
Dividing both sides by 14 we get
$\dfrac{42}{14}=\dfrac{14d}{14}$
i.e. d = 3.
[b] Some of the most important formulae in A.P are:
[1] ${{a}_{n}}=a+\left( n-1 \right)d$
[2] ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
[3] ${{S}_{n}}=\dfrac{n}{2}\left[ 2l-\left( n-1 \right)d \right]$ where l is the last term.
[4] ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
[5] ${{a}_{n}}={{S}_{n}}-{{S}_{n-1}}$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE