
The first and the last terms of an A.P are 7 and 49, respectively. If the sum of all its terms is 420, find its common difference.
Answer
600.9k+ views
Hint: Use the fact that in an A.P ${{S}_{n}}=\dfrac{n}{2}\left( a+{{a}_{n}} \right)$ and ${{a}_{n}}=a+(n-1)d$. Solve the two equations to get the value of n (the number of terms) and d (the common difference).
Complete step-by-step answer:
An arithmetic progression is a sequence of numbers in which adjacent numbers differ by a constant factor.
It is represented in the form a, a+d, a+2d, …
a is called the first term of the A.P and d the common difference.
Here it is given that a = 7 ,${{a}_{n}}=49$and ${{S}_{n}}=420$
We know that in an A.P ${{S}_{n}}=\dfrac{n}{2}\left( a+{{a}_{n}} \right)$
Using we get $420=\dfrac{n}{2}\left( 7+49 \right)$
$\Rightarrow 420=\dfrac{n}{2}\times 56$
$\Rightarrow 420=28n$
Dividing both sides by 28, we get
$\dfrac{420}{28}=\dfrac{28n}{28}$
$\Rightarrow 15=n$
Hence n = 15.
We know that in an A.P ${{a}_{n}}=a+\left( n-1 \right)d$
Using we get
$49=7+\left( 15-1 \right)d$
i.e. $49=7+14d$
Subtracting 7 from both sides we get
$49-7=7+14d-7$
$\Rightarrow 42=14d$
Dividing both sides by 14 we get
$\dfrac{42}{14}=\dfrac{14d}{14}$
i.e. 3 = d
Hence d = 3.
Hence the common difference of the A.P = 3.
Note: [a] This question can also be solved using the formula ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
Using ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$ we get
$420=\dfrac{n}{2}\left[ 2\times 7+\left( n-1 \right)d \right]\text{ (i)}$
Also ${{a}_{n}}=a+\left( n-1 \right)d$
Using we get
$49=7+\left( n-1 \right)d$
Subtracting 7 from both sides we get
$49-7=7+\left( n-1 \right)d-7$
$\Rightarrow 42=\left( n-1 \right)d\text{ (ii)}$
Substituting the value of $\left( n-1 \right)d$in equation (i) we get
$420=\dfrac{n}{2}\left( 2\times 7+42 \right)$
i.e. $420=\dfrac{n}{2}\left( 14+42 \right)$
$\Rightarrow 420=\dfrac{n}{2}(56)$
$\Rightarrow 420=28n$
Dividing both sides by 28 we get
\[\dfrac{420}{28}=\dfrac{28n}{28}\]
i.e. n = 15.
Substituting the value of n in equation (ii), we get
$42=\left( 15-1 \right)d$
i.e.
$42=14d$
Dividing both sides by 14 we get
$\dfrac{42}{14}=\dfrac{14d}{14}$
i.e. d = 3.
[b] Some of the most important formulae in A.P are:
[1] ${{a}_{n}}=a+\left( n-1 \right)d$
[2] ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
[3] ${{S}_{n}}=\dfrac{n}{2}\left[ 2l-\left( n-1 \right)d \right]$ where l is the last term.
[4] ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
[5] ${{a}_{n}}={{S}_{n}}-{{S}_{n-1}}$
Complete step-by-step answer:
An arithmetic progression is a sequence of numbers in which adjacent numbers differ by a constant factor.
It is represented in the form a, a+d, a+2d, …
a is called the first term of the A.P and d the common difference.
Here it is given that a = 7 ,${{a}_{n}}=49$and ${{S}_{n}}=420$
We know that in an A.P ${{S}_{n}}=\dfrac{n}{2}\left( a+{{a}_{n}} \right)$
Using we get $420=\dfrac{n}{2}\left( 7+49 \right)$
$\Rightarrow 420=\dfrac{n}{2}\times 56$
$\Rightarrow 420=28n$
Dividing both sides by 28, we get
$\dfrac{420}{28}=\dfrac{28n}{28}$
$\Rightarrow 15=n$
Hence n = 15.
We know that in an A.P ${{a}_{n}}=a+\left( n-1 \right)d$
Using we get
$49=7+\left( 15-1 \right)d$
i.e. $49=7+14d$
Subtracting 7 from both sides we get
$49-7=7+14d-7$
$\Rightarrow 42=14d$
Dividing both sides by 14 we get
$\dfrac{42}{14}=\dfrac{14d}{14}$
i.e. 3 = d
Hence d = 3.
Hence the common difference of the A.P = 3.
Note: [a] This question can also be solved using the formula ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
Using ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$ we get
$420=\dfrac{n}{2}\left[ 2\times 7+\left( n-1 \right)d \right]\text{ (i)}$
Also ${{a}_{n}}=a+\left( n-1 \right)d$
Using we get
$49=7+\left( n-1 \right)d$
Subtracting 7 from both sides we get
$49-7=7+\left( n-1 \right)d-7$
$\Rightarrow 42=\left( n-1 \right)d\text{ (ii)}$
Substituting the value of $\left( n-1 \right)d$in equation (i) we get
$420=\dfrac{n}{2}\left( 2\times 7+42 \right)$
i.e. $420=\dfrac{n}{2}\left( 14+42 \right)$
$\Rightarrow 420=\dfrac{n}{2}(56)$
$\Rightarrow 420=28n$
Dividing both sides by 28 we get
\[\dfrac{420}{28}=\dfrac{28n}{28}\]
i.e. n = 15.
Substituting the value of n in equation (ii), we get
$42=\left( 15-1 \right)d$
i.e.
$42=14d$
Dividing both sides by 14 we get
$\dfrac{42}{14}=\dfrac{14d}{14}$
i.e. d = 3.
[b] Some of the most important formulae in A.P are:
[1] ${{a}_{n}}=a+\left( n-1 \right)d$
[2] ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$
[3] ${{S}_{n}}=\dfrac{n}{2}\left[ 2l-\left( n-1 \right)d \right]$ where l is the last term.
[4] ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
[5] ${{a}_{n}}={{S}_{n}}-{{S}_{n-1}}$
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

