Answer

Verified

415.8k+ views

**Hint:**Here we need to use the formula where we can compare the given term by the formula:

${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$

So we can write ${x^3} - 1 + {y^3} + 3xy$ in this form and then get the required answer.

**Complete step by step solution:**

Here we are given that we need to find the factors of ${x^3} - 1 + {y^3} + 3xy$ which means we need to write it in the form of the multiplication of the two terms. So we need to see which formula is to be used.

We know that as we have the formula where we can get:

${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$

Now we can compare this formula with the given equation which is ${x^3} - 1 + {y^3} + 3xy$

Now we can write this equation as:

${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$

If we compare this with ${a^3} + {b^3} + {c^3} - 3abc$

Then we can say that:

$

a = x \\

b = - 1 \\

c = y \\

$

Now we can simply substitute the values of all the variables of the formula with the given equation, then we will get:

${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + {{\left( { - 1} \right)}^2} + {y^2} - x\left( { - 1} \right) - \left( { - 1} \right)y - xy} \right)$

${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$

Hence whenever we are given the equation and the factors are to be found then we simply need to apply the formula and then compare the terms and get the factors in the simplified form.

So we have got that:

${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$

**Hence we can say that A) is the correct option out of the given four options.**

**Note:**

Here the student must know the general formula of all the cubic as well as the square option. If we are given to find the factors of $\left( {{a^2} + {b^2} + 2ab - {c^2}} \right)$ then we can write it as $\left( {{{\left( {a + b} \right)}^2} - {c^2}} \right)$.

Now we can apply the formula ${x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)$ and get the factors in simplified form.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE