Answer

Verified

373.2k+ views

**Hint:**Here we need to use the formula where we can compare the given term by the formula:

${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$

So we can write ${x^3} - 1 + {y^3} + 3xy$ in this form and then get the required answer.

**Complete step by step solution:**

Here we are given that we need to find the factors of ${x^3} - 1 + {y^3} + 3xy$ which means we need to write it in the form of the multiplication of the two terms. So we need to see which formula is to be used.

We know that as we have the formula where we can get:

${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$

Now we can compare this formula with the given equation which is ${x^3} - 1 + {y^3} + 3xy$

Now we can write this equation as:

${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$

If we compare this with ${a^3} + {b^3} + {c^3} - 3abc$

Then we can say that:

$

a = x \\

b = - 1 \\

c = y \\

$

Now we can simply substitute the values of all the variables of the formula with the given equation, then we will get:

${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + {{\left( { - 1} \right)}^2} + {y^2} - x\left( { - 1} \right) - \left( { - 1} \right)y - xy} \right)$

${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$

Hence whenever we are given the equation and the factors are to be found then we simply need to apply the formula and then compare the terms and get the factors in the simplified form.

So we have got that:

${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$

**Hence we can say that A) is the correct option out of the given four options.**

**Note:**

Here the student must know the general formula of all the cubic as well as the square option. If we are given to find the factors of $\left( {{a^2} + {b^2} + 2ab - {c^2}} \right)$ then we can write it as $\left( {{{\left( {a + b} \right)}^2} - {c^2}} \right)$.

Now we can apply the formula ${x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)$ and get the factors in simplified form.

Recently Updated Pages

How do you evaluate cos left dfrac13pi 12 right class 10 maths CBSE

How do you rewrite the inequality left 11 2x right class 10 maths CBSE

How do you solve 4 3x 025 class 10 maths CBSE

How do you find the zeros of x3 3x2 + 6x 18 class 10 maths CBSE

Consider the following statements in respect of the class 10 maths CBSE

How do you factor 2x3 + 3x2 8x 12 class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Name 10 Living and Non living things class 9 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail