The factors of ${x^3} - 1 + {y^3} + 3xy$ are:
A. $\left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
B. $\left( {x + y + 1} \right)\left( {{x^2} + {y^2} + 1 - xy - x - y} \right)$
C. $\left( {x - 1 + y} \right)\left( {{x^2} - 1 - {y^2} + x + y + xy} \right)$
D. $3\left( {x + y + 1} \right)\left( {{x^2} + {y^2} - 1} \right)$
Answer
Verified
437.7k+ views
Hint: Here we need to use the formula where we can compare the given term by the formula:
${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$
So we can write ${x^3} - 1 + {y^3} + 3xy$ in this form and then get the required answer.
Complete step by step solution:
Here we are given that we need to find the factors of ${x^3} - 1 + {y^3} + 3xy$ which means we need to write it in the form of the multiplication of the two terms. So we need to see which formula is to be used.
We know that as we have the formula where we can get:
${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$
Now we can compare this formula with the given equation which is ${x^3} - 1 + {y^3} + 3xy$
Now we can write this equation as:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$
If we compare this with ${a^3} + {b^3} + {c^3} - 3abc$
Then we can say that:
$
a = x \\
b = - 1 \\
c = y \\
$
Now we can simply substitute the values of all the variables of the formula with the given equation, then we will get:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + {{\left( { - 1} \right)}^2} + {y^2} - x\left( { - 1} \right) - \left( { - 1} \right)y - xy} \right)$
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
Hence whenever we are given the equation and the factors are to be found then we simply need to apply the formula and then compare the terms and get the factors in the simplified form.
So we have got that:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
Hence we can say that A) is the correct option out of the given four options.
Note:
Here the student must know the general formula of all the cubic as well as the square option. If we are given to find the factors of $\left( {{a^2} + {b^2} + 2ab - {c^2}} \right)$ then we can write it as $\left( {{{\left( {a + b} \right)}^2} - {c^2}} \right)$.
Now we can apply the formula ${x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)$ and get the factors in simplified form.
${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$
So we can write ${x^3} - 1 + {y^3} + 3xy$ in this form and then get the required answer.
Complete step by step solution:
Here we are given that we need to find the factors of ${x^3} - 1 + {y^3} + 3xy$ which means we need to write it in the form of the multiplication of the two terms. So we need to see which formula is to be used.
We know that as we have the formula where we can get:
${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$
Now we can compare this formula with the given equation which is ${x^3} - 1 + {y^3} + 3xy$
Now we can write this equation as:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$
If we compare this with ${a^3} + {b^3} + {c^3} - 3abc$
Then we can say that:
$
a = x \\
b = - 1 \\
c = y \\
$
Now we can simply substitute the values of all the variables of the formula with the given equation, then we will get:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + {{\left( { - 1} \right)}^2} + {y^2} - x\left( { - 1} \right) - \left( { - 1} \right)y - xy} \right)$
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
Hence whenever we are given the equation and the factors are to be found then we simply need to apply the formula and then compare the terms and get the factors in the simplified form.
So we have got that:
${x^3} + {\left( { - 1} \right)^3} + {y^3} - 3\left( { - 1} \right)xy$$ = \left( {x - 1 + y} \right)\left( {{x^2} + 1 + {y^2} + x + y - xy} \right)$
Hence we can say that A) is the correct option out of the given four options.
Note:
Here the student must know the general formula of all the cubic as well as the square option. If we are given to find the factors of $\left( {{a^2} + {b^2} + 2ab - {c^2}} \right)$ then we can write it as $\left( {{{\left( {a + b} \right)}^2} - {c^2}} \right)$.
Now we can apply the formula ${x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right)$ and get the factors in simplified form.
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it