Answer
Verified
497.7k+ views
Hint- Here, a general formula for probability of occurrence of an event is used.
Given, we are tossing a die twice whose faces are marked with numbers 0,1,2,3,4,5.
As we know that the general formula for probability is given by
Probability of occurrence of an event$ = \dfrac{{{\text{Number of favourable outcomes}}}}{{{\text{Total number of possible outcomes}}}}{\text{ }} \to {\text{(1)}}$
Here, the favourable event is that the product of digits on the upper face occurred when a die is rolled twice is zero. For this event to occur, zero appears at least once on the upper face of the die when it is rolled twice.
Here possible outcomes are $
\left( {0,0} \right),\left( {0,1} \right),\left( {0,2} \right),\left( {0,3} \right),\left( {0,4} \right),\left( {0,5} \right) \\
\left( {1,0} \right),\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {1,4} \right),\left( {1,5} \right) \\
\left( {2,0} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,4} \right),\left( {2,5} \right) \\
\left( {3,0} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right),\left( {3,4} \right),\left( {3,5} \right) \\
\left( {4,0} \right),\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right),\left( {4,4} \right),\left( {4,5} \right) \\
\left( {5,0} \right),\left( {5,1} \right),\left( {5,2} \right),\left( {5,3} \right),\left( {5,4} \right),\left( {5,5} \right) \\
$
Total number of possible outcomes$ = 36$
For product of the digits on the upper face when a die is rolled twice to be zero, the favourable outcomes are $\left( {0,0} \right),\left( {0,1} \right),\left( {0,2} \right),\left( {0,3} \right),\left( {0,4} \right),\left( {0,5} \right),\left( {1,0} \right),\left( {2,0} \right),\left( {3,0} \right),\left( {4,0} \right),\left( {5,0} \right)$.
Number of favourable outcomes$ = 11$
Using formula given by equation (1), we get
Required probability$ = \dfrac{{11}}{{36}}$.
Hence, the probability that the product of digits on the upper face is zero when a die is rolled twice is $\dfrac{{11}}{{36}}$.
Note- In these types of problems, the favourable event is considered as the event whose probability is asked. In this particular question for the product of digits on the upper face to be zero, either one of these digits should be zero or both of these digits should be zero.
Given, we are tossing a die twice whose faces are marked with numbers 0,1,2,3,4,5.
As we know that the general formula for probability is given by
Probability of occurrence of an event$ = \dfrac{{{\text{Number of favourable outcomes}}}}{{{\text{Total number of possible outcomes}}}}{\text{ }} \to {\text{(1)}}$
Here, the favourable event is that the product of digits on the upper face occurred when a die is rolled twice is zero. For this event to occur, zero appears at least once on the upper face of the die when it is rolled twice.
Here possible outcomes are $
\left( {0,0} \right),\left( {0,1} \right),\left( {0,2} \right),\left( {0,3} \right),\left( {0,4} \right),\left( {0,5} \right) \\
\left( {1,0} \right),\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {1,4} \right),\left( {1,5} \right) \\
\left( {2,0} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,4} \right),\left( {2,5} \right) \\
\left( {3,0} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right),\left( {3,4} \right),\left( {3,5} \right) \\
\left( {4,0} \right),\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right),\left( {4,4} \right),\left( {4,5} \right) \\
\left( {5,0} \right),\left( {5,1} \right),\left( {5,2} \right),\left( {5,3} \right),\left( {5,4} \right),\left( {5,5} \right) \\
$
Total number of possible outcomes$ = 36$
For product of the digits on the upper face when a die is rolled twice to be zero, the favourable outcomes are $\left( {0,0} \right),\left( {0,1} \right),\left( {0,2} \right),\left( {0,3} \right),\left( {0,4} \right),\left( {0,5} \right),\left( {1,0} \right),\left( {2,0} \right),\left( {3,0} \right),\left( {4,0} \right),\left( {5,0} \right)$.
Number of favourable outcomes$ = 11$
Using formula given by equation (1), we get
Required probability$ = \dfrac{{11}}{{36}}$.
Hence, the probability that the product of digits on the upper face is zero when a die is rolled twice is $\dfrac{{11}}{{36}}$.
Note- In these types of problems, the favourable event is considered as the event whose probability is asked. In this particular question for the product of digits on the upper face to be zero, either one of these digits should be zero or both of these digits should be zero.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it