The equation ${x^2} + x + a = 0$ and ${x^2} + ax + 1 = 0$ have a common real root.
E. For no values of a
F. For exactly one value of a
G. For exactly two values of a
H. For exactly three values of a
Last updated date: 30th Mar 2023
•
Total views: 309k
•
Views today: 8.85k
Answer
309k+ views
Hint: First check whether the root of the equation satisfies the equation or not and then analyse the answer.
We have given the quadratic equations ${x^2} + x + a = 0{\text{ - - - - - - - - - - }}(1)$ and ${x^2} + ax + 1 = 0{\text{ - - - - - - - - - - - }}(2)$ .Let the common real root is $\alpha $ , then $\alpha $ will satisfy both the equations. From the first equation we’ll get ${\alpha ^2} + \alpha + a = 0{\text{ - - - - - }}(3)$ and from second, ${\alpha ^2} + a\alpha + 1 = 0{\text{ - - - - - }}(4)$ . Now, we have to solve these equations for the value of $\alpha $ .On subtracting them we’ll get,
$\
{\alpha ^2} + \alpha + a = 0{\text{ - - - - - }}(3) \\
{\alpha ^2} + a\alpha + 1 = 0{\text{ - - - - }}(4) \\
\Rightarrow {\alpha ^2} - {\alpha ^2} + \alpha - a\alpha + a - 1 = 0 \\
\Rightarrow {{{\alpha }}^2} - {{{\alpha }}^2} + \alpha - a\alpha + a - 1 = 0 \\
\Rightarrow \alpha (1 - a) + a - 1 = 0 \\
\Rightarrow (1 - a)[\alpha - 1] = 0 \\
\Rightarrow \alpha = 1 \\
\ $
On putting this value of $\alpha $ in third equation we’ll get,
$\
1 + 1 + a = 0 \\
\Rightarrow a = - 2 \\
\ $
So, the given condition is true for exactly one value of a.
Hence option B is correct.
Note: Here we need to be clear, what we are actually looking for. In this question, we had to find the value of a given certain condition. We applied that given condition and solved it.
We have given the quadratic equations ${x^2} + x + a = 0{\text{ - - - - - - - - - - }}(1)$ and ${x^2} + ax + 1 = 0{\text{ - - - - - - - - - - - }}(2)$ .Let the common real root is $\alpha $ , then $\alpha $ will satisfy both the equations. From the first equation we’ll get ${\alpha ^2} + \alpha + a = 0{\text{ - - - - - }}(3)$ and from second, ${\alpha ^2} + a\alpha + 1 = 0{\text{ - - - - - }}(4)$ . Now, we have to solve these equations for the value of $\alpha $ .On subtracting them we’ll get,
$\
{\alpha ^2} + \alpha + a = 0{\text{ - - - - - }}(3) \\
{\alpha ^2} + a\alpha + 1 = 0{\text{ - - - - }}(4) \\
\Rightarrow {\alpha ^2} - {\alpha ^2} + \alpha - a\alpha + a - 1 = 0 \\
\Rightarrow {{{\alpha }}^2} - {{{\alpha }}^2} + \alpha - a\alpha + a - 1 = 0 \\
\Rightarrow \alpha (1 - a) + a - 1 = 0 \\
\Rightarrow (1 - a)[\alpha - 1] = 0 \\
\Rightarrow \alpha = 1 \\
\ $
On putting this value of $\alpha $ in third equation we’ll get,
$\
1 + 1 + a = 0 \\
\Rightarrow a = - 2 \\
\ $
So, the given condition is true for exactly one value of a.
Hence option B is correct.
Note: Here we need to be clear, what we are actually looking for. In this question, we had to find the value of a given certain condition. We applied that given condition and solved it.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
