
The energy required to break one mole of $\text{ Cl}-\text{Cl }$bonds in the $\text{ C}{{\text{l}}_{\text{2}}}\text{ }$ is $\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\ $. The longest wavelength of light capable of breaking a single $\text{ Cl}-\text{Cl }$bond is:
A) $\text{ 594 nm }$
B) $\text{ 640 nm }$
C) $\text{ 700 nm }$
D) $\text{ 494 nm }$
Answer
578.1k+ views
Hint: The energy required to break a bond is known as the bond dissociation energy. We know that the energy of the radiation is related to the wavelength of the radiation for one mole of the molecule. The relation is stated as,
$\text{ E = }\dfrac{{{\text{N}}_{\text{A}}}\text{ h C}}{\lambda }\text{ }$
Where E is the bond dissociation energy, $\text{ }{{\text{N}}_{\text{A}}}\text{ }$ is the Avogadro's number, h is the Planck's constant $\text{ 6}\text{.626 }\times \text{ 10}-34\text{ J }{{\text{s}}^{-1}}\text{ }$ , c is the speed of light $\text{ 3}\times \text{1}{{\text{0}}^{\text{8}}}\text{ m }{{\text{s}}^{-1}}\text{ }$ and $\text{ }\lambda \text{ }$ is the wavelength of radiation required to break the bond.
Complete step by step solution:
Bond dissociation energy is the amount of energy required to break a chemical bond between A and B $\text{ A}-\text{B }$ . The bond dissociation energy depends on the extent of the bond formed between atoms A and B.
Here we have given the following data,
The energy required to break one mole of chlorine molecule is,$\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\ $
We are interested to find the longest wavelength of light capable of breaking a single $\text{ Cl}-\text{Cl }$bond.
We know that the energy of the radiation is related to the wavelengths of the radiation. The relation is stated as,
$\text{ E = h}\upsilon \text{ = }\dfrac{\text{ hC}}{\lambda }\text{ }$
However, we have considered the bond dissociation energy for the one-mole chlorine molecule. Thus the number of chlorine molecules in one mole is always equal to Avogadro's number $\text{ }{{\text{N}}_{\text{A}}}\text{ = 6}\text{.023 }\times \text{ 1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{ }$
Thus the energy relation is modified as,
$\text{ E = }\dfrac{{{\text{N}}_{\text{A}}}\text{ h C}}{\lambda }\text{ }$ (1)
Where E is the bond dissociation energy, $\text{ }{{\text{N}}_{\text{A}}}\text{ }$ is the Avogadro's number, h is the Planck's constant $\text{ 6}\text{.626 }\times \text{ 10}-34\text{ J }{{\text{s}}^{-1}}\text{ }$ , c is the speed of light $\text{ 3}\times \text{1}{{\text{0}}^{\text{8}}}\text{ m }{{\text{s}}^{-1}}\text{ }$ and $\text{ }\lambda \text{ }$ is the wavelength of radiation required to break the bond.
Let's substitute the values in the equation (1), we have
$\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\text{ = }\dfrac{\text{(6}\text{.023 }\times \text{1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{)}\left( 6.626\times {{10}^{-34}}\text{ J}{{\text{s}}^{-1}} \right)\text{ }\left( 3\times {{10}^{8}}\text{ m }{{\text{s}}^{-1}} \right)}{\lambda }\text{ }$
Rearrange equation with respect to wavelength. We have,
$\begin{align}
& \text{ }\lambda \text{ = }\dfrac{\text{(6}\text{.023 }\times \text{1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{)}\left( 6.626\times {{10}^{-34}}\text{ J}{{\text{s}}^{-1}} \right)\text{ }\left( 3\times {{10}^{8}}\text{ m }{{\text{s}}^{-1}} \right)}{\text{242 }\times \text{1}{{\text{0}}^{\text{3}}}\text{ mo}{{\text{l}}^{-1\text{ }}}}\text{ } \\
& \Rightarrow \text{ }\lambda \text{ = }\dfrac{\left( 1.19\times {{10}^{-1}} \right)}{\text{242 }\times \text{1}{{\text{0}}^{\text{3}}}\text{ }}\text{J} \\
& \Rightarrow \text{ }\lambda \text{ = 4}\text{.94 }\times \text{ 1}{{\text{0}}^{-7}}\text{m} \\
\end{align}$
The obtained value of the wavelength can be converted into nanometres. The relation between the one nanometre with the meter is,
$\text{ 1 nm = 1}{{\text{0}}^{-9\text{ }}}\text{nm }$
Therefore,
$\text{ }\lambda \text{ = 494 }\times \text{ 1}{{\text{0}}^{-9}}\text{m = 494 nm }$
Thus, the longest wavelength required to break a single $\text{ Cl}-\text{Cl }$is equal to $\text{ 494 nm }$ .
Hence, (D) is the correct option.
Note: Note that the wavelength is always calculated in the standard format, where the meter is converted into the suitable and required form. Some of the most used units of wavelengths are as follows,
$\text{ E = }\dfrac{{{\text{N}}_{\text{A}}}\text{ h C}}{\lambda }\text{ }$
Where E is the bond dissociation energy, $\text{ }{{\text{N}}_{\text{A}}}\text{ }$ is the Avogadro's number, h is the Planck's constant $\text{ 6}\text{.626 }\times \text{ 10}-34\text{ J }{{\text{s}}^{-1}}\text{ }$ , c is the speed of light $\text{ 3}\times \text{1}{{\text{0}}^{\text{8}}}\text{ m }{{\text{s}}^{-1}}\text{ }$ and $\text{ }\lambda \text{ }$ is the wavelength of radiation required to break the bond.
Complete step by step solution:
Bond dissociation energy is the amount of energy required to break a chemical bond between A and B $\text{ A}-\text{B }$ . The bond dissociation energy depends on the extent of the bond formed between atoms A and B.
Here we have given the following data,
The energy required to break one mole of chlorine molecule is,$\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\ $
We are interested to find the longest wavelength of light capable of breaking a single $\text{ Cl}-\text{Cl }$bond.
We know that the energy of the radiation is related to the wavelengths of the radiation. The relation is stated as,
$\text{ E = h}\upsilon \text{ = }\dfrac{\text{ hC}}{\lambda }\text{ }$
However, we have considered the bond dissociation energy for the one-mole chlorine molecule. Thus the number of chlorine molecules in one mole is always equal to Avogadro's number $\text{ }{{\text{N}}_{\text{A}}}\text{ = 6}\text{.023 }\times \text{ 1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{ }$
Thus the energy relation is modified as,
$\text{ E = }\dfrac{{{\text{N}}_{\text{A}}}\text{ h C}}{\lambda }\text{ }$ (1)
Where E is the bond dissociation energy, $\text{ }{{\text{N}}_{\text{A}}}\text{ }$ is the Avogadro's number, h is the Planck's constant $\text{ 6}\text{.626 }\times \text{ 10}-34\text{ J }{{\text{s}}^{-1}}\text{ }$ , c is the speed of light $\text{ 3}\times \text{1}{{\text{0}}^{\text{8}}}\text{ m }{{\text{s}}^{-1}}\text{ }$ and $\text{ }\lambda \text{ }$ is the wavelength of radiation required to break the bond.
Let's substitute the values in the equation (1), we have
$\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\text{ = }\dfrac{\text{(6}\text{.023 }\times \text{1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{)}\left( 6.626\times {{10}^{-34}}\text{ J}{{\text{s}}^{-1}} \right)\text{ }\left( 3\times {{10}^{8}}\text{ m }{{\text{s}}^{-1}} \right)}{\lambda }\text{ }$
Rearrange equation with respect to wavelength. We have,
$\begin{align}
& \text{ }\lambda \text{ = }\dfrac{\text{(6}\text{.023 }\times \text{1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{)}\left( 6.626\times {{10}^{-34}}\text{ J}{{\text{s}}^{-1}} \right)\text{ }\left( 3\times {{10}^{8}}\text{ m }{{\text{s}}^{-1}} \right)}{\text{242 }\times \text{1}{{\text{0}}^{\text{3}}}\text{ mo}{{\text{l}}^{-1\text{ }}}}\text{ } \\
& \Rightarrow \text{ }\lambda \text{ = }\dfrac{\left( 1.19\times {{10}^{-1}} \right)}{\text{242 }\times \text{1}{{\text{0}}^{\text{3}}}\text{ }}\text{J} \\
& \Rightarrow \text{ }\lambda \text{ = 4}\text{.94 }\times \text{ 1}{{\text{0}}^{-7}}\text{m} \\
\end{align}$
The obtained value of the wavelength can be converted into nanometres. The relation between the one nanometre with the meter is,
$\text{ 1 nm = 1}{{\text{0}}^{-9\text{ }}}\text{nm }$
Therefore,
$\text{ }\lambda \text{ = 494 }\times \text{ 1}{{\text{0}}^{-9}}\text{m = 494 nm }$
Thus, the longest wavelength required to break a single $\text{ Cl}-\text{Cl }$is equal to $\text{ 494 nm }$ .
Hence, (D) is the correct option.
Note: Note that the wavelength is always calculated in the standard format, where the meter is converted into the suitable and required form. Some of the most used units of wavelengths are as follows,
| Unit | In meter | |
| 1. | Centimetre $\text{ }\left( \text{cm} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-2}}\text{ }$ |
| 2. | millimetre$\text{ }\left( \text{mm} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-3}}\text{ }$ |
| 3. | micrometre$\text{ }\left( \mu \text{m} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-6}}\text{ }$ |
| 4 | nanometres$\text{ }\left( \text{nm} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-9}}\text{ }$ |
| 5. | Angstrom$\text{ }\left( \overset{\text{0}}{\mathop{\text{A}}}\, \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-10}}\text{ }$ |
| 6. | Picometer$\text{ }\left( \text{pm} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-12}}\text{ }$. |
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

