
The energy required to break one mole of $\text{ Cl}-\text{Cl }$bonds in the $\text{ C}{{\text{l}}_{\text{2}}}\text{ }$ is $\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\ $. The longest wavelength of light capable of breaking a single $\text{ Cl}-\text{Cl }$bond is:
A) $\text{ 594 nm }$
B) $\text{ 640 nm }$
C) $\text{ 700 nm }$
D) $\text{ 494 nm }$
Answer
565.8k+ views
Hint: The energy required to break a bond is known as the bond dissociation energy. We know that the energy of the radiation is related to the wavelength of the radiation for one mole of the molecule. The relation is stated as,
$\text{ E = }\dfrac{{{\text{N}}_{\text{A}}}\text{ h C}}{\lambda }\text{ }$
Where E is the bond dissociation energy, $\text{ }{{\text{N}}_{\text{A}}}\text{ }$ is the Avogadro's number, h is the Planck's constant $\text{ 6}\text{.626 }\times \text{ 10}-34\text{ J }{{\text{s}}^{-1}}\text{ }$ , c is the speed of light $\text{ 3}\times \text{1}{{\text{0}}^{\text{8}}}\text{ m }{{\text{s}}^{-1}}\text{ }$ and $\text{ }\lambda \text{ }$ is the wavelength of radiation required to break the bond.
Complete step by step solution:
Bond dissociation energy is the amount of energy required to break a chemical bond between A and B $\text{ A}-\text{B }$ . The bond dissociation energy depends on the extent of the bond formed between atoms A and B.
Here we have given the following data,
The energy required to break one mole of chlorine molecule is,$\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\ $
We are interested to find the longest wavelength of light capable of breaking a single $\text{ Cl}-\text{Cl }$bond.
We know that the energy of the radiation is related to the wavelengths of the radiation. The relation is stated as,
$\text{ E = h}\upsilon \text{ = }\dfrac{\text{ hC}}{\lambda }\text{ }$
However, we have considered the bond dissociation energy for the one-mole chlorine molecule. Thus the number of chlorine molecules in one mole is always equal to Avogadro's number $\text{ }{{\text{N}}_{\text{A}}}\text{ = 6}\text{.023 }\times \text{ 1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{ }$
Thus the energy relation is modified as,
$\text{ E = }\dfrac{{{\text{N}}_{\text{A}}}\text{ h C}}{\lambda }\text{ }$ (1)
Where E is the bond dissociation energy, $\text{ }{{\text{N}}_{\text{A}}}\text{ }$ is the Avogadro's number, h is the Planck's constant $\text{ 6}\text{.626 }\times \text{ 10}-34\text{ J }{{\text{s}}^{-1}}\text{ }$ , c is the speed of light $\text{ 3}\times \text{1}{{\text{0}}^{\text{8}}}\text{ m }{{\text{s}}^{-1}}\text{ }$ and $\text{ }\lambda \text{ }$ is the wavelength of radiation required to break the bond.
Let's substitute the values in the equation (1), we have
$\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\text{ = }\dfrac{\text{(6}\text{.023 }\times \text{1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{)}\left( 6.626\times {{10}^{-34}}\text{ J}{{\text{s}}^{-1}} \right)\text{ }\left( 3\times {{10}^{8}}\text{ m }{{\text{s}}^{-1}} \right)}{\lambda }\text{ }$
Rearrange equation with respect to wavelength. We have,
$\begin{align}
& \text{ }\lambda \text{ = }\dfrac{\text{(6}\text{.023 }\times \text{1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{)}\left( 6.626\times {{10}^{-34}}\text{ J}{{\text{s}}^{-1}} \right)\text{ }\left( 3\times {{10}^{8}}\text{ m }{{\text{s}}^{-1}} \right)}{\text{242 }\times \text{1}{{\text{0}}^{\text{3}}}\text{ mo}{{\text{l}}^{-1\text{ }}}}\text{ } \\
& \Rightarrow \text{ }\lambda \text{ = }\dfrac{\left( 1.19\times {{10}^{-1}} \right)}{\text{242 }\times \text{1}{{\text{0}}^{\text{3}}}\text{ }}\text{J} \\
& \Rightarrow \text{ }\lambda \text{ = 4}\text{.94 }\times \text{ 1}{{\text{0}}^{-7}}\text{m} \\
\end{align}$
The obtained value of the wavelength can be converted into nanometres. The relation between the one nanometre with the meter is,
$\text{ 1 nm = 1}{{\text{0}}^{-9\text{ }}}\text{nm }$
Therefore,
$\text{ }\lambda \text{ = 494 }\times \text{ 1}{{\text{0}}^{-9}}\text{m = 494 nm }$
Thus, the longest wavelength required to break a single $\text{ Cl}-\text{Cl }$is equal to $\text{ 494 nm }$ .
Hence, (D) is the correct option.
Note: Note that the wavelength is always calculated in the standard format, where the meter is converted into the suitable and required form. Some of the most used units of wavelengths are as follows,
$\text{ E = }\dfrac{{{\text{N}}_{\text{A}}}\text{ h C}}{\lambda }\text{ }$
Where E is the bond dissociation energy, $\text{ }{{\text{N}}_{\text{A}}}\text{ }$ is the Avogadro's number, h is the Planck's constant $\text{ 6}\text{.626 }\times \text{ 10}-34\text{ J }{{\text{s}}^{-1}}\text{ }$ , c is the speed of light $\text{ 3}\times \text{1}{{\text{0}}^{\text{8}}}\text{ m }{{\text{s}}^{-1}}\text{ }$ and $\text{ }\lambda \text{ }$ is the wavelength of radiation required to break the bond.
Complete step by step solution:
Bond dissociation energy is the amount of energy required to break a chemical bond between A and B $\text{ A}-\text{B }$ . The bond dissociation energy depends on the extent of the bond formed between atoms A and B.
Here we have given the following data,
The energy required to break one mole of chlorine molecule is,$\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\ $
We are interested to find the longest wavelength of light capable of breaking a single $\text{ Cl}-\text{Cl }$bond.
We know that the energy of the radiation is related to the wavelengths of the radiation. The relation is stated as,
$\text{ E = h}\upsilon \text{ = }\dfrac{\text{ hC}}{\lambda }\text{ }$
However, we have considered the bond dissociation energy for the one-mole chlorine molecule. Thus the number of chlorine molecules in one mole is always equal to Avogadro's number $\text{ }{{\text{N}}_{\text{A}}}\text{ = 6}\text{.023 }\times \text{ 1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{ }$
Thus the energy relation is modified as,
$\text{ E = }\dfrac{{{\text{N}}_{\text{A}}}\text{ h C}}{\lambda }\text{ }$ (1)
Where E is the bond dissociation energy, $\text{ }{{\text{N}}_{\text{A}}}\text{ }$ is the Avogadro's number, h is the Planck's constant $\text{ 6}\text{.626 }\times \text{ 10}-34\text{ J }{{\text{s}}^{-1}}\text{ }$ , c is the speed of light $\text{ 3}\times \text{1}{{\text{0}}^{\text{8}}}\text{ m }{{\text{s}}^{-1}}\text{ }$ and $\text{ }\lambda \text{ }$ is the wavelength of radiation required to break the bond.
Let's substitute the values in the equation (1), we have
$\text{ 242 KJ mo}{{\text{l}}^{-1\text{ }}}\text{ = }\dfrac{\text{(6}\text{.023 }\times \text{1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{)}\left( 6.626\times {{10}^{-34}}\text{ J}{{\text{s}}^{-1}} \right)\text{ }\left( 3\times {{10}^{8}}\text{ m }{{\text{s}}^{-1}} \right)}{\lambda }\text{ }$
Rearrange equation with respect to wavelength. We have,
$\begin{align}
& \text{ }\lambda \text{ = }\dfrac{\text{(6}\text{.023 }\times \text{1}{{\text{0}}^{\text{23}}}\text{ mo}{{\text{l}}^{-1}}\text{)}\left( 6.626\times {{10}^{-34}}\text{ J}{{\text{s}}^{-1}} \right)\text{ }\left( 3\times {{10}^{8}}\text{ m }{{\text{s}}^{-1}} \right)}{\text{242 }\times \text{1}{{\text{0}}^{\text{3}}}\text{ mo}{{\text{l}}^{-1\text{ }}}}\text{ } \\
& \Rightarrow \text{ }\lambda \text{ = }\dfrac{\left( 1.19\times {{10}^{-1}} \right)}{\text{242 }\times \text{1}{{\text{0}}^{\text{3}}}\text{ }}\text{J} \\
& \Rightarrow \text{ }\lambda \text{ = 4}\text{.94 }\times \text{ 1}{{\text{0}}^{-7}}\text{m} \\
\end{align}$
The obtained value of the wavelength can be converted into nanometres. The relation between the one nanometre with the meter is,
$\text{ 1 nm = 1}{{\text{0}}^{-9\text{ }}}\text{nm }$
Therefore,
$\text{ }\lambda \text{ = 494 }\times \text{ 1}{{\text{0}}^{-9}}\text{m = 494 nm }$
Thus, the longest wavelength required to break a single $\text{ Cl}-\text{Cl }$is equal to $\text{ 494 nm }$ .
Hence, (D) is the correct option.
Note: Note that the wavelength is always calculated in the standard format, where the meter is converted into the suitable and required form. Some of the most used units of wavelengths are as follows,
| Unit | In meter | |
| 1. | Centimetre $\text{ }\left( \text{cm} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-2}}\text{ }$ |
| 2. | millimetre$\text{ }\left( \text{mm} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-3}}\text{ }$ |
| 3. | micrometre$\text{ }\left( \mu \text{m} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-6}}\text{ }$ |
| 4 | nanometres$\text{ }\left( \text{nm} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-9}}\text{ }$ |
| 5. | Angstrom$\text{ }\left( \overset{\text{0}}{\mathop{\text{A}}}\, \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-10}}\text{ }$ |
| 6. | Picometer$\text{ }\left( \text{pm} \right)\text{ }$ | $\text{ 1}{{\text{0}}^{-12}}\text{ }$. |
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

